Bài tập  /  Bài đang cần trả lời

Bài 16 trang 102 SGK Hình học 12

1 Xem trả lời
Hỏi chi tiết
475
0
0
Tôi yêu Việt Nam
12/12/2017 02:49:43
Bài 16. Trong không gian \(Oxyz\) cho mặt phẳng \((α)\) có phương trình \(4x + y + 2z + 1 = 0\) và mặt phẳng \((β)\) có phương trình \(2x - 2y + z + 3 = 0\).
a) Chứng minh rằng \((α)\) cắt \((β)\).
b) Viết phương trình tham số của đường thẳng \(d\) là giao của \((α)\) và \((β)\).
c) Tìm điểm \(M'\) đối xứng với điểm \(M(4 ; 2 ; 1)\) qua mặt phẳng \((α)\).
d) Tìm điểm \(N'\) đối xứng với điểm \(N(0 ; 2 ; 4)\) qua đường thẳng \(d\).
Giải
a) Mặt phẳng \((α)\) có vectơ pháp tuyến \(\overrightarrow n  = (4; 1; 2)\)
Mặt phẳng \((β)\) có vectơ pháp tuyến \(\overrightarrow {n'}  = (2; -2; 1)\)
Vì \({4 \over 2} \ne {1 \over { - 2}} \ne {2 \over 1} \Rightarrow \overrightarrow n \) và \(\overrightarrow {n'} \) không cùng phương.
Suy ra \((α)\) và \((β)\) cắt nhau.
b) \((α)\) cắt \((β)\) nên \(\overrightarrow \) và \(\overrightarrow \) có giá vuông góc với đường thẳng \(d\), vì vậy vectơ \(\overrightarrow  = \left[ {\overrightarrow , \overrightarrow } \right]= (5; 0; -10\)) là một vectơ chỉ phương của đường thẳng \(d\).
Ta có thể chọn vectơ \(\overrightarrow u = (1; 0; -2)\) làm vectơ chỉ phương.
Ta tìm một điểm nằm trên \(d\).
Xét hệ\(\left\{ \matrix{
4x + y + 2z + 1 = 0 \hfill \cr
2x - 2y + z + 3 = 0 \hfill \cr} \right.\)
Lấy điểm \(M_0(1; 1; -3) ∈ d\). 
Phương trình tham số của \(d\) là:\(\left\{ \matrix{
x = 1 + s \hfill \cr
y = 1 \hfill \cr
z = - 3 - 2s \hfill \cr} \right.\)
c) Mặt phẳng \((α)\) có vectơ pháp tuyến \(\overrightarrow n  = (4; 1; 2)\).
Đường thẳng \(∆\) đi qua \(M(4; 2; 1)\) và vuông góc với \((α)\), nhận vectơ \(\overrightarrow n \) làm vectơ chỉ phương và có phương trình tham số: 
\(\left\{ \matrix{
x = 4 + 4t \hfill \cr
y = 2 + t \hfill \cr
z = 1 + 2t \hfill \cr} \right.\)
Trước hết ta tìm toạ độ hình chiếu \(H\) của \(M\) trên \((α)\) bằng cách thay các biểu thức của \(x, y, z\)  theo \(t\) vào phương trình của \((α)\), ta có:
\(4(4 + 4t) + (2 + t) + 2(1 + 2t) + 1 = 0\)
\( \Leftrightarrow 21t + 21 = 0 \Leftrightarrow t =  - 1\)
Từ đây ta tính được \(H (0; 1; -1)\)
Gọi \(M' (x; y; z)\) là điểm đối xứng với \(M\) qua mp \((α)\) thì \(\overrightarrow {MM'}  = 2\overrightarrow {MH} \):
\(\overrightarrow {MH} = (-4; -1; -2)\)
\(\overrightarrow {MM'} = (x - 4; y - 2; z - 1)\). 
\(\overrightarrow {MM'} = 2\overrightarrow {MH} \Leftrightarrow \left\{ \matrix{
x - 4 = 2.( - 4) \Rightarrow x = - 4 \hfill \cr
y - 2 = 2.( - 1) \Rightarrow y = 0 \hfill \cr
z - 1 = 2.( - 2) \Rightarrow z = - 3 \hfill \cr} \right.\)
\(\Rightarrow M( - 4;0; - 3)\)
d) Đường thẳng \(d\) có vectơ chỉ phương \(\overrightarrow a  = (1; 0; -2)\).
Mặt phẳng \((P)\) đi qua \(N(0; 2; 4)\) và vuông góc với \(d\), nhận \(\overrightarrow a \) làm vectơ pháp tuyến và có phương trình:
\(1(x - 0) + 0(y - 2) - 2(z - 4) = 0\)
\((P)\): \(x - 2y + 8 = 0\)
Ta tìm giao điểm \(I\) của \(d\) và \((P)\). Ta có:
\(t - 2(-1 - 2t) + 8 = 0\)\( \Leftrightarrow  5t + 10 = 0\Leftrightarrow  t = -2\)
\( \Leftrightarrow I( -2; 1; 3)\)
\(N' (x; y; z)\) là điểm đối xứng của \(N\) qua \(d\) thì \(\overrightarrow {NN'}  = 2\overrightarrow {NI} \)
\(\overrightarrow {NI} = (-2; -1; -1)\), \(\overrightarrow {NN'}  = (x; y - 2; z - 4) \)
\( \Rightarrow \left\{ \matrix{
x = ( - 2).2 \hfill \cr
y - 2 = ( - 1).2 \hfill \cr
z - 4 = ( - 1).2 \hfill \cr} \right. \Rightarrow \left\{ \matrix{
x = - 4 \hfill \cr
y = 0 \hfill \cr
z = 2 \hfill \cr} \right.\)
\(\Rightarrow N'( - 4;0;2)\)

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×