Thực hiện các phép tính:
a)\( - - {{2x\left( {1 - x} \right)} \over {9 - {x^2}}}\)
b)\(} - {1 \over {x + 1}} + }\)
Hướng dẫn làm bài:
a)\( - - {{2x\left( {1 - x} \right)} \over {9 - {x^2}}} = + {{ - \left( {1 - x} \right)} \over {x + 3}} + {{2x\left( {1 - x} \right)} \over { - \left( {9 - {x^2}} \right)}}\)
\( = + + {{2x\left( {1 - x} \right)} \over {{x^2} - 9}} = + + \over {\left( {x - 3} \right)\left( {x + 3} \right)}}\)
\( = {{\left( {x + 1} \right)\left( {x + 3} \right) + \left( {x - 1} \right)\left( {x - 3} \right) + 2x - 2{x^2}} \over {\left( {x - 3} \right)\left( {x + 3} \right)}}\)
\( = {{{x^2} + 4x + 3 + {x^2} - 4x + 3 + 2x - 2{x^2}} \over {\left( {x - 3} \right)\left( {x + 3} \right)}}\)
\( = = {{2\left( {x + 3} \right)} \over {\left( {x - 3} \right)\left( {x + 3} \right)}} = {2 \over {x - 3}}\)
b)\(} - {1 \over {x + 1}} + } = } + {{ - 1} \over {x + 1}} + {{ - \left( {x + 3} \right)} \over { - \left( {1 - {x^2}} \right)}}\)
\( = } + {{ - 1} \over {x + 1}} + {{ - \left( {x + 3} \right)} \over {{x^2} - 1}} = } + {{ - 1} \over {x + 1}} + {{ - \left( {x + 3} \right)} \over {\left( {x - 1} \right)\left( {x + 1} \right)}}\)
\( = {{\left( {3x + 1} \right)\left( {x + 1} \right) - {{\left( {x - 1} \right)}^2} - \left( {x + 3} \right)\left( {x - 1} \right)} \over {{{\left( {x - 1} \right)}^2}\left( {x + 1} \right)}}\)
\( = {{3{x^2} + 4x + 1 - \left( {{x^2} - 2x + 1} \right) - \left( {{x^2} + 2x - 3} \right)} \over {{{\left( {x - 1} \right)}^2}\left( {x + 1} \right)}}\)
\( = {{3{x^2} + 4x + 1 - {x^2} + 2x - 1 - {x^2} - 2x + 3} \over {{{\left( {x - 1} \right)}^2}\left( {x + 1} \right)}}\)
\( = {{{x^2} + 4x + 3} \over {{{\left( {x - 1} \right)}^2}\left( {x + 1} \right)}} = {{{x^2} + x + 3x + 3} \over {{{\left( {x - 1} \right)}^2}\left( {x + 1} \right)}}\)
\( = {{x\left( {x + 1} \right) + 3\left( {x + 1} \right)} \over {{{\left( {x - 1} \right)}^2}\left( {x + 1} \right)}} = {{\left( {x + 1} \right)\left( {x + 3} \right)} \over {{{\left( {x - 1} \right)}^2}\left( {x + 1} \right)}} = }\)