Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC có 3 góc nhọn. Vẽ phía ngoài tam giác đó tam giác cân ABE và GAC (cân tại A). H là hình chiếu A trên BC. Chứng minh HA đi qua trung điểm EG

​Câu 1. Cho tam giác ABC có 3 góc nhọn.Vẽ phía ngoài tam giác đó tam giác cân ABE và GAC(cân tại A).H là hình chiếu A trên BC.Chứng minh HA đi qua trung điểm EG
Câu 2. Cho tam giác ABC cân ở A,Trên AB lấy M.Trên tia đối CB lấy N sao cho BM=CN.Gọi I là trung điểm MN.
a, Chứng minh B,I,C thẳng hàng 
b, C/m đường trung trực MN luôn đi qua 1 điểm cố định
2 Xem trả lời
Hỏi chi tiết
651
1
0
Nguyễn Thị Thu Trang
29/07/2017 15:30:48
bài 2
a,Vì AB=AC(do tam giác ABC cân tại A) 
BM=CN(gt) 
=>AM=AN 
Tam giác AMN có AM=AN(cmt) 
=> Tam giác AMN cân tại A 
=> góc N= (180độ-góc A)/2(hq) (1) 
Tam giác ABC cân tại A(gt)=> góc B= (180độ-góc A)/2(hq) (2) 
(1);(2)=> góc B=góc N 
Xét tam giác BMI và tam giác CNIcó: 
IM=IN(do K là trung điểm MN) 
góc B=góc N(cmt) 
BM=CN(gt) 
=> Tam giác BMI= tam giác CNI(cgc) 
=> góc MIB= góc CIN(2 góc tương ứng), mà 2 góc này ở vị trí đối đỉnh 
=> B.I.C thẳng hàng(đpcm)

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
1
0
a,Vì AB=AC(do tam giác ABC cân tại A) 
BM=CN(gt) 
=>AM=AN 
Tam giác AMN có AM=AN(cmt) 
=> Tam giác AMN cân tại A 
=> góc N= (180độ-góc A)/2(hq) (1) 
Tam giác ABC cân tại A(gt)=> góc B= (180độ-góc A)/2(hq) (2) 
(1);(2)=> góc B=góc N 
Xét tam giác BMI và tam giác CNIcó: 
IM=IN(do K là trung điểm MN) 
góc B=góc N(cmt) 
BM=CN(gt) 
=> Tam giác BMI= tam giác CNI(cgc) 
=> góc MIB= góc CIN(2 góc tương ứng), mà 2 góc này ở vị trí đối đỉnh 
=> B.I.C thẳng hàng(đpcm)

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×