Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Bài 13 (trang 20 sgk Hình Học 12 nâng cao): Hai đỉnh của một khối tam mặt đều cho trước gọi là các đỉnh khối diện nếu chung không thuộc cùng một cạnh của khối diện đó. Đoạn thẳng nối hai đỉnh đối diện gọi là một đường chéo của khối tam giác đều. chứng minh rằng trong khối tắm mặt đều:
a) Ba đường chéo cắt nhau tại trung điểm của mỗi đường.
b) Ba đường chép đôi một vuông góc.
c) Ba đường chéo bằng nhau.
Lời giải:
Xét khối 8 mặt đều ABCDEF. Vì A, B, C, D cách đều E và F nên A, B, A, D cùng thuộc mặt phẳng trung trực của đoạn EF và do đó ABCD là hình thoi ( vì AB = BC = CD = DA)
a) Tứ giác ABCD là hình thoi nên AC và BD cắt nhau tại trung điểm O của mỗi đường.
Tương tự, AC và EF cắt nhau tại trung điểm của mỗi đường.
Vậy AC, BD, EF cắt nhau tại trung điểm của mỗi đường.
b) Tứ giác ABCD là hình thoi nên ta cũng có AC ⊥ BD, tương tự AC ⊥ EF,BD ⊥ EF, vậy AC, BD, EF đôi một vuông góc.
c) Cách 1. Dễ thấy ΔABD=ΔEBD (c-c-c) nen các trung tuyến tương ứng bằng nhau tứ là AO = EO
=> AC = EF, tương tự, AC = BD.
Vậy AC = BD = EF (đpcm).
Cách 2. Vì EO ⊥ (ABCD) nên AO, OB là hình chiếu của EA, EB trên (ABCD) mà EA = EB => OA = OB => AC = DB. Tương tự, AC = EF.
Vậy AC = BD = EF.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |