ĐKXĐ x < 6, y < 5 , 2x + y + 5 > 0 ; 3x + 2y + 11 > 0
(1) <=> (20 - 3x)√(6 - x) - (17 - 3y)√(5 - y) = 0
<=> 2√(6 - x) + (18 - 3x)√(6 - x) - 2√(5 - y) - (15 - 3y)√(5 - y) = 0
<=> 2√(6 - x) - 2√(5 - y) + 3(6 - x)√(6 - x) - 3(5 - y)√(5 - y) = 0
<=> 2(√(6 - x) - √(5 - y)) + 3(√(6 - x) - √(5 - y))(6 - x + √(6 - x).√(5 - y) + 5 - y) = 0
<=> (√(6 - x) - √(5 - y)).[2 + 3(6 - x + √(6 - x).√(5 - y) + 5 - y] = 0
<=> √(6 - x) - √(5 - y) = 0, Do 2 + 3(6 - x + √(6 - x).√(5 - y) + 5 - y > 0 với mọi x < 6, y < 5
<=> √(6 - x) = √(5 - y)
<=> 6 - x = 5 - y
<=> y = x - 1
Thay y = x - 1 vào (2) ta có
2√(2x + x - 1 + 5) + 3√(3x + 2x - 2 + 11) = x^2 + 6x + 13
<=> 2√(3x + 4) + 3√(5x + 9) = x^2 + 6x + 13
<=> (x^2 + x) + 2(x + 2 - √(3x + 4)) + 3(x + 3 - √(5x + 9)) = 0
<=> (x^2 + x) + 2.[(x + 2)^2 - (3x + 4)]/(x + 2 + √(3x + 4)) + 3.[(x + 3)^2 - (5x + 9)]/(x + 3 + √(5x + 9)) = 0
<=> (x^2 + x) + 2(x^2 + x)/(x + 2 + √(3x + 4)) + 3(x^2 + x)/(x + 3 + √(5x + 9)) = 0
<=> (x^2 + x)[1 + 2/(x + 2 + √(3x + 4)) + 3/(x + 3 + √(5x + 9))] = 0
<=> x^2 + x = 0, do 1 + 2/(x + 2 + √(3x + 4)) + 3/(x + 3 + √(5x + 9)) > 0 với mọi x, y thỏa mãn ĐKXĐ
<=> x(x + 1) = 0
<=> x = 0 hoặc x = -1, TM
Vậy nghiệm của hpt là (x , y) = (0;-1) , (-1;-2)