Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lý thuyết Bài 2: Tích phân
1. Tích phân
a) Định nghĩa: Cho hàm số f(x) liên tục trên đoạn [a; b] . Giả sử F(x) là một nguyên hàm của f(x) trên đoạn [a; b] . Hiệu số F(b) – F(a) được gọi là tích phân từ a đến b ( hay tích phân xác định trên đoạn [a; b] của hàm f(x), kí hiệu là
Vậy ta có
Chú ý:
+ Tích phân không phụ thuộc vào chữ làm biến số trong dấu tích phân, tức là
b) Tính chất
(a < c1 < c2 < ... < cn < b)
2. Phương pháp tính tích phân
a) Phương pháp biến đổi biến số
Định lí 1. Giả sử hàm số x = φ(t) có đạo hàm liên tục trên đoạn [a; b] sao cho φ(α) = a, φ(β) = b và a ≤ φ(t) ≤ b, ∀t ∈ [a; b] . Khi đó
Định lí 2. Giả sử hàm số u = u(x) có đạo hàm liên tục trên đoạn [a; b] sao cho α ≤ u(x) ≤ β, ∀x ∈ [a; b] .
Nếu f(x) = g(u(x))u'(x), ∀x ∈ [a; b] trong đó g(u) liên tục trên đoạn [α β] thì
b) Phương pháp tính tích phân từng phần
Định lí. Nếu u = u(x), v = v(x) là hai hàm số có đạo hàm liên tục trên đoạn [a; b] , thì
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |