Cho tích phân \[I = \mathop \smallint \limits_0^{\frac{\pi }{2}} {e^{{{\sin }^2}x}}\sin x{\cos ^3}xdx\]. Nếu đổi biến số \[t = si{n^2}x\] thì: Đặt\[t = {\sin ^2}x \Rightarrow dt = 2\sin x\cos xdx \Rightarrow \sin x\cos xdx = \frac{1}{2}dt\] và\[{\cos ^2}x = 1 - {\sin ^2}x = 1 - t\] Đổi cận: \(\left\{ {\begin{array}{*{20}{c}}{x = 0 \Rightarrow t = 0}\\{x = \frac{\pi }{2} \Rightarrow t = 1}\end{array}} \right.\) Khi đó \[I = \mathop \smallint \limits_0^{\frac{\pi }{2}} {e^{{{\sin }^2}x}}\sin ...

Nguyễn Thị Nhài | Chat Online
05/09 12:06:54 (Tổng hợp - Lớp 12)
11 lượt xem

Cho tích phân \[I = \mathop \smallint \limits_0^{\frac{\pi }{2}} {e^{{{\sin }^2}x}}\sin x{\cos ^3}xdx\]. Nếu đổi biến số \[t = si{n^2}x\] thì:

Đặt\[t = {\sin ^2}x \Rightarrow dt = 2\sin x\cos xdx \Rightarrow \sin x\cos xdx = \frac{1}{2}dt\] và\[{\cos ^2}x = 1 - {\sin ^2}x = 1 - t\]

Đổi cận: \(\left\{ {\begin{array}{*{20}{c}}{x = 0 \Rightarrow t = 0}\\{x = \frac{\pi }{2} \Rightarrow t = 1}\end{array}} \right.\)

Khi đó

\[I = \mathop \smallint \limits_0^{\frac{\pi }{2}} {e^{{{\sin }^2}x}}\sin x{\cos ^3}xdx = \mathop \smallint \limits_0^{\frac{\pi }{2}} {e^{{{\sin }^2}x}}co{s^2}x\sin x\cos xdx = \frac{1}{2}\mathop \smallint \limits_0^1 {e^t}\left( {1 - t} \right)dt\]

Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi
Số lượng đã trả lời:
A. \[I = \frac{1}{2}\mathop \smallint \limits_0^1 {e^t}\left( {1 - t} \right)dt\]
0 %
0 phiếu
B. \[I = 2\left[ {\mathop \smallint \limits_0^1 {e^t}dt + \mathop \smallint \limits_0^1 t{e^t}dt} \right]\]
0 %
0 phiếu
C. \[I = 2\mathop \smallint \limits_0^1 {e^t}\left( {1 - t} \right)dt\]
0 %
0 phiếu
D. \[I = \frac{1}{2}\mathop \smallint \limits_0^1 {e^t}\left( {1 - {t^2}} \right)dt\]Trả lời:
0 %
0 phiếu
Tổng cộng:
0 trả lời
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Gửi bình luận của bạn tại đây (*):
(Thông tin Email/ĐT sẽ không hiển thị phía người dùng)
*Nhấp vào đây để nhận mã Nhấp vào đây để nhận mã

Trắc nghiệm liên quan

×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k