Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Bài 11 (trang 53 sgk Hình Học 12 nâng cao): Chứng minh rằng hình tròn xoay có vô số mặt đối xứng.
Lời giải:
Giả sử H là hình tròn xoay có trục Δ. Lấy một điểm M ∈ H và gọi M’ là điểm đối xứng của M qua Δ thì MM’ là đường kính của đường tròn (CM) nên M'∈H. Từ đó suy ra Δ là trung trực đối xứng của H. Mọi mặt phẳng (P) đi qua Δ và đều là mặt phẳng đối xứng của H. thật vậy, nếu M ∈H và M’ đối xứng với M qua mặt phẳng P thì M’ cũng nằm trên đường tròn CM nên M’ ∈H.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |