Cho tam giác ABC cân tại A, vẽ AH vuông góc với BC tại H. Biết AB = 5cm, BC = 6cm.
A. Chứng minh BH = HC
B. Tính độ dài BH, AH
C. Gọi G là trọng tâm của tam giác ABC. Chứng minh rằng A, G, H thẳng hàng
D. Chứng minh góc ABG = góc ACG
giúp mik vs ạ
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a. xét tg ABH và tg ACH vuông tại H có
AB=AC (tg ABC cân tại A)
góc B = góc C (tg ABC cân tại A)
suy ra tg ABH = tg ACH (cạnh huyền-góc nhọn)
=> BH=HC (2 cạnh tương ứng)
b. ta có BC= BH + HC
mà BH=BC => BC/2=6/2=BH=HC=3(cm)
áp dụng định lí Pytago ta có
AB2= AH2 + BH2
=> AH2= AB2 - BH2 =52 - 32= 25 - 9 = 16
=> AH= căn 16 = 4(cm)
c. AH là 1 đường phân giác vì BH=HC
vì AH là 1 đoạn thẳng mà G thuộc AH (trọng tâm của tg là điểm mà 3 đường phân giác cắt nhau)
nên A,H,G thẳng hàng
d. xét tg GBH và tg GCH vuông tại H có
HB=HC (cm ở câu a)
GH là cạnh chung
vậy tg GBH = tg GCH (2 cạnh góc vuông)
=> góc GBH= góc GCH (2 góc tương ứng)
ta có:
góc B= góc GBH+ góc ABG
góc C= góc GCH+ góc ACG
mà góc B = góc C(tg ABC cân tại A)
góc GBH= góc GCH (tg GBH = tg GCH)
nên góc ABG= góc ACG
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |