Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a.
AB = AC (gt)
=> Tam giác ABC cân tại A
AN = NB = \(\frac{AB}{2}\) (N là trung điểm của AB)
AM = MC = \(\frac{AC}{2}\) (M là trung điểm của AC)
mà AB = AC (tam giác ABC cân tại A)
=> AM = MC = AN = NB
Xét tam giác ABM và tam giác ACN có:
AM = AN (chứng minh trên)
A là góc chung
AB = AC (tam giác ABC cân tại A)
=> Tam giác ABM = Tam giác ACN (c.g.c)
Xét tam giác BNC và tam giác CMB có:
BN = CN (chứng minh trên)
NBC = MCB (tam giác ABC cân tại A)
BC là cạnh chung
=> Tam giác BNC = Tam giác CMB (c.g.c)
b.
MB = ME (M là trung điểm của BE)
NC = NF (N là trung điểm của CF)
mà MB = NC (tam giác BNC = tam giác CMB)
=> ME = NF
ANF = BNC (2 góc đối đỉnh)
AME = CMB (2 góc đối đỉnh)
mà BNC = CMB (tam giác BNC = CMB)
=> ANF = AME
Xét tam giác ANF và tam giác AME có:
AN = AM (chứng minh trên)
ANF = AME (chứng minh trên)
NF = ME (chứng minh trên)
=> Tam giác ANF = tam giác AME (c.g.c)
=> AF = AE (2 cạnh tương ứng)
=> A là trung điểm của FE
c.
AM = AN (chứng minh trên)
=> Tam giác ANM cân tại A
=> \(ANM=\frac{180^0-NAM}{2}\) (1)
Tam giác ABC cân tại A
=> \(ABC=\frac{180^0-BAC}{2}\) (2)
Từ (1) và (2)
=> ANM = ABC
mà 2 góc này ở vị trí đồng vị
=> MN // BC
Xét tam giác ANF và BNC có:
AN = NB (N là trung điểm của AB)
ANF = BNC (2 góc đối đỉnh)
NF = NC (N là trung điểm của FC)
=> Tam giác ANF = Tam giác BNC (c.g.c)
=> FAN = CBN (2 góc tương ứng)
mà 2 góc này ở vị trí so le trong
=> AF // BC
mà MN // BC (chứng minh trên)
=> EF // MN // BC
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |