LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Chứng minh rằng

----- Nội dung dịch tự động từ ảnh -----
Bài 1:
a) Chứng minh rằng: Lập phương của một số nguyên a bất kỳ trừ đi 13 lần số
nguyên đó thì luôn chia hết cho 6.
b) a +11a:6với mọi a nguyên
c) a –7a:6 với mọi a nguyên
2 trả lời
Hỏi chi tiết
96
1
0
Ngoc Trinh
23/12/2023 16:49:31
+5đ tặng

Lời giải:

Xét biểu thức A=n3−13nA=n3−13n. Ta cần cm A⋮6A⋮6

Thật vậy: A=n3−13n=n3−n−12n=n(n2−1)−12nA=n3−13n=n3−n−12n=n(n2−1)−12n

A=n(n−1)(n+1)−12nA=n(n−1)(n+1)−12n

Vì n,n−1n,n−1 là hai số tự nhiên liên tiếp nên tích n(n−1)⋮2n(n−1)⋮2

⇒n(n−1)(n+1)⋮3⇒n(n−1)(n+1)⋮3

Vì n−1,n,n+1n−1,n,n+1 là ba số tự nhiên liên tiếp nên tích n(n−1)(n+1)⋮3n(n−1)(n+1)⋮3

Kết hợp với (2,3) nguyên tố cùng nhau, do đó: n(n−1)(n+1)⋮6n(n−1)(n+1)⋮6

Mà 12n⋮612n⋮6

⇒A=n(n−1)(n+1)−12n⋮6⇔n3−13n⋮6⇒A=n(n−1)(n+1)−12n⋮6⇔n3−13n⋮6

Ta có đpcm.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
0
0
Vũ Hưng
23/12/2023 17:27:14
+4đ tặng
a^3 + 11a = a^3-a + 12a = (a-1).a.(a+1) + 12a
Ta có (a-1).a(a+1) là tích 3 số liên tiếp nên chia hết cho 3!= 6
12 a chia hết cho 6
Vậy a^3 + 11 a chia hết cho 6
a^3- 7a= a^3 -a - 6a = ( a-1).a.(a+1) -6a 
(a-1).a.(a+1) là tích của 3 số liên tiếp nên chia hết cho 3! = 6
-6a chia hết cho 6
Vậy a^3 -7a chia hết cho 6
Vũ Hưng
Chấm và like cho thầy nhé

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập Toán học Lớp 8 mới nhất
Trắc nghiệm Toán học Lớp 8 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư