Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC, góc A tù và AB = 3; BC = 6

Cho tam giác ABC, góc A tù và AB = 3; BC = 6. Chứng minh rằng 3 < AC < 6
 
1 Xem trả lời
Hỏi chi tiết
127
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Ta có tam giác ABC có góc A tù và AB = 3, BC = 6.

Áp dụng định lý cosin trong tam giác ABC, ta có:
AC² = AB² + BC² - 2AB·BC·cosA
AC² = 3² + 6² - 2·3·6·cosA
AC² = 9 + 36 - 36·cosA
AC² = 45 - 36·cosA

Vì góc A tù nên cosA < 0, nên ta có:
AC² = 45 - 36·cosA > 45

Do đó, ta có: AC > √45 > √36 = 6

Vậy ta có 3 < AC < 6.
1
0
Thắng đz
01/02 20:23:03
+5đ tặng
Ta có A là góc tù 
Mà trong 1 tam giác chỉ có tối đa 1 góc tù nên A là góc lớn nhất mà BC đối diện với A
=>BC là cạnh lớn nhất 
=>AC<BC=6                                                             (1)
Theo BĐT tam giác AC>|BC-AB|=|6-3|=3                (2)
Từ (1) và (2) => 3<AC<6

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×