a, 1/2 - 43/101 + ( -1/3) - 1/6 b, ( 5/3 - 3/7 + 9 ) - ( 2 + 5/7 - 2/3 ) + ( 8/7 - 4/3 - 10 ) c, A= 1/2 + 5/6 + 1/3 d, B= 1/2 - [ 3/8 + ( - 7/4 ) ] e, 2/3 + -10/6 + -4/3 f, 7/3 - 5/6 - 2/3 ( tính hợp lý , ngoặc dài và phân số ạ )
Tham khảo câu trả lời từ Trợ lý ảo Lazi Sure, let's simplify each of the given expressions step by step. ### a. \( \frac{1}{2} - \frac{43}{101} + \left( -\frac{1}{3} \right) - \frac{1}{6} \) First, let's find a common denominator for all the fractions. The denominators are 2, 101, 3, and 6. The least common multiple (LCM) of these numbers is 606. \[ \frac{1}{2} = \frac{303}{606}, \quad \frac{43}{101} = \frac{258}{606}, \quad -\frac{1}{3} = -\frac{202}{606}, \quad \frac{1}{6} = \frac{101}{606} \] Now, combine them: \[ \frac{303}{606} - \frac{258}{606} - \frac{202}{606} - \frac{101}{606} = \frac{303 - 258 - 202 - 101}{606} = \frac{-258}{606} = -\frac{43}{101} \] So, the simplified result is: \[ -\frac{43}{101} \] ### b. \( \left( \frac{5}{3} - \frac{3}{7} + 9 \right) - \left( 2 + \frac{5}{7} - \frac{2}{3} \right) + \left( \frac{8}{7} - \frac{4}{3} - 10 \right) \) First, simplify each group separately. 1. \( \frac{5}{3} - \frac{3}{7} + 9 \) Find a common denominator for \(\frac{5}{3}\) and \(\frac{3}{7}\). The LCM of 3 and 7 is 21. \[ \frac{5}{3} = \frac{35}{21}, \quad \frac{3}{7} = \frac{9}{21} \] \[ \frac{35}{21} - \frac{9}{21} = \frac{26}{21} \] So, \( \frac{5}{3} - \frac{3}{7} + 9 = \frac{26}{21} + 9 = \frac{26}{21} + \frac{189}{21} = \frac{215}{21} \). 2. \( 2 + \frac{5}{7} - \frac{2}{3} \) Find a common denominator for \(\frac{5}{7}\) and \(\frac{2}{3}\). The LCM of 7 and 3 is 21. \[ \frac{5}{7} = \frac{15}{21}, \quad \frac{2}{3} = \frac{14}{21} \] \[ 2 + \frac{15}{21} - \frac{14}{21} = 2 + \frac{1}{21} = \frac{42}{21} + \frac{1}{21} = \frac{43}{21} \] 3. \( \frac{8}{7} - \frac{4}{3} - 10 \) Find a common denominator for \(\frac{8}{7}\) and \(\frac{4}{3}\). The LCM of 7 and 3 is 21. \[ \frac{8}{7} = \frac{24}{21}, \quad \frac{4}{3} = \frac{28}{21} \] \[ \frac{24}{21} - \frac{28}{21} = -\frac{4}{21} \] So, \( \frac{8}{7} - \frac{4}{3} - 10 = -\frac{4}{21} - 10 = -\frac{4}{21} - \frac{210}{21} = -\frac{214}{21} \). Now, combine all three groups: \[ \frac{215}{21} - \frac{43}{21} + \left( -\frac{214}{21} \right) = \frac{215 - 43 - 214}{21} = \frac{-42}{21} = -2 \] So, the simplified result is: \[ -2 \] ### c. \( A = \frac{1}{2} + \frac{5}{6} + \frac{1}{3} \) Find a common denominator for \(\frac{1}{2}\), \(\frac{5}{6}\), and \(\frac{1}{3}\). The LCM of 2, 6, and 3 is 6. \[ \frac{1}{2} = \frac{3}{6}, \quad \frac{1}{3} = \frac{2}{6} \] \[ \frac{3}{6} + \frac{5}{6} + \frac{2}{6} = \frac{10}{6} = \frac{5}{3} \] So, the simplified result is: \[ A = \frac{5}{3} \] ### d. \( B = \frac{1}{2} - \left[ \frac{3}{8} + \left( -\frac{7}{4} \right) \right] \) First, simplify the expression inside the brackets: \[ \frac{3}{8} + \left( -\frac{7}{4} \right) = \frac{3}{8} - \frac{14}{8} = -\frac{11}{8} \] Now, subtract this from \(\frac{1}{2}\): \[ \frac{1}{2} - \left( -\frac{11}{8} \right) = \frac{1}{2} + \frac{11}{8} \] Find a common denominator for \(\frac{1}{2}\) and \(\frac{11}{8}\). The LCM of 2 and 8 is 8. \[ \frac{1}{2} = \frac{4}{8} \] \[ \frac{4}{8} + \frac{11}{8} = \frac{15}{8} \] So, the simplified result is: \[ B = \frac{15}{8} \] ### e. \( \frac{2}{3} + -\frac{10}{6} + -\frac{4}{3} \) First, simplify \(-\frac{10}{6}\): \[ -\frac{10}{6} = -\frac{5}{3} \] Now, combine all the fractions: \[ \frac{2}{3} - \frac{5}{3} - \frac{4}{3} = \frac{2 - 5 - 4}{3} = \frac{-7}{3} \] So, the simplified result is: \[ -\frac{7}{3} \] ### f. \( \frac{7}{3} - \frac{5}{6} - \frac{2}{3} \) Find a common denominator for \(\frac{7}{3}\), \(\frac{5}{6}\), and \(\frac{2}{3}\). The LCM of 3 and 6 is 6. \[ \frac{7}{3} = \frac{14}{6}, \quad \frac{2}{3} = \frac{4}{6} \] Now, combine all the fractions: \[ \frac{14}{6} - \frac{5}{6} - \frac{4}{6} = \frac{14 - 5 - 4}{6} = \frac{5}{6} \] So, the simplified result is: \[ \frac{5}{6} \] These are the simplified results for each expression.