Cho A = 1/1. 21 + 1/2. 22 + 1/3. 23 + ... + 1/80. 100; B = 1/1 . 81 + 1/2. 82 + 1/3. 83 + ... + 1/20. 100. Tính A/B Tham khảo câu trả lời từ Trợ lý ảo Lazi To calculate the ratio \( \frac{A}{B} \), we need to evaluate the sums \( A \) and \( B \) given in the problem. Given: \[ A = \frac{1}{1 \cdot 21} + \frac{1}{2 \cdot 22} + \frac{1}{3 \cdot 23} + \ldots + \frac{1}{80 \cdot 100} \] \[ B = \frac{1}{1 \cdot 81} + \frac{1}{2 \cdot 82} + \frac{1}{3 \cdot 83} + \ldots + \frac{1}{20 \cdot 100} \] To find the ratio \( \frac{A}{B} \), let's first simplify the general term of each series. For \( A \): \[ \frac{1}{k \cdot (k + 20)} = \frac{1}{k(k + 20)} \] For \( B \): \[ \frac{1}{k \cdot (k + 80)} = \frac{1}{k(k + 80)} \] Now, let's express each term in partial fractions. For \( A \): \[ \frac{1}{k(k + 20)} = \frac{1}{20} \left( \frac{1}{k} - \frac{1}{k + 20} \right) \] For \( B \): \[ \frac{1}{k(k + 80)} = \frac{1}{80} \left( \frac{1}{k} - \frac{1}{k + 80} \right) \] Now, we sum these series. For \( A \): \[ A = \sum_{k=1}^{80} \frac{1}{k(k + 20)} = \frac{1}{20} \sum_{k=1}^{80} \left( \frac{1}{k} - \frac{1}{k + 20} \right) \] For \( B \): \[ B = \sum_{k=1}^{20} \frac{1}{k(k + 80)} = \frac{1}{80} \sum_{k=1}^{20} \left( \frac{1}{k} - \frac{1}{k + 80} \right) \] Notice that in both sums, most terms will cancel out, leaving us with: For \( A \): \[ A = \frac{1}{20} \left( \sum_{k=1}^{80} \frac{1}{k} - \sum_{k=21}^{100} \frac{1}{k} \right) \] For \( B \): \[ B = \frac{1}{80} \left( \sum_{k=1}^{20} \frac{1}{k} - \sum_{k=81}^{100} \frac{1}{k} \right) \] Now, let's simplify the remaining sums: For \( A \): \[ A = \frac{1}{20} \left( \sum_{k=1}^{20} \frac{1}{k} - \sum_{k=81}^{100} \frac{1}{k} \right) \] For \( B \): \[ B = \frac{1}{80} \left( \sum_{k=1}^{20} \frac{1}{k} - \sum_{k=81}^{100} \frac{1}{k} \right) \] Since the sums \( \sum_{k=1}^{20} \frac{1}{k} \) and \( \sum_{k=81}^{100} \frac{1}{k} \) are the same in both \( A \) and \( B \), we can see that: \[ \frac{A}{B} = \frac{\frac{1}{20} \left( \sum_{k=1}^{20} \frac{1}{k} - \sum_{k=81}^{100} \frac{1}{k} \right)}{\frac{1}{80} \left( \sum_{k=1}^{20} \frac{1}{k} - \sum_{k=81}^{100} \frac{1}{k} \right)} = \frac{1/20}{1/80} = 4 \] Therefore, the ratio \( \frac{A}{B} \) is \( 4 \).