Bài 1:
a)
A = abc (1/a + 1/b) + (1/b + 1/c) (1/c + 1/a)
= abc (b + a)/ab + (ac + bc)/bc (ab + ac)/ac
= c(b + a) + (a + b)(ab + ac)/ac
= c(b + a) + (a + b)(b + c)
Có a + b + c = 0<=>a+b=-c
=>A = c(b + a) + (a + b)(b + c)
= c(-c) + (-c)(-a)
= -c^2 + ac
= ac - c^2
Vậy A = ac - c^2
b)
VT=(1/a + 1/b + 1/c)^2 = (bc + ac + ab)^2 / (abc)^2
VP/1/a^2 + 1/b^2 + 1/c^2 = (b^2c^2 + a^2c^2 + a^2b^2) / (a^2b^2c^2)
Có a + b + c = 0
=> a = -b - c
b = -a - c
c = -a - b
Thay vào vế trái, ta được:
VT=(bc + ac + ab)^2 / (abc)^2 = [(-b - c)c + (-a - c)a + (-a - b)b]^2 / [(-b - c)(-a - c)(-a - b)]^2
= (ac - c^2 + ab - a^2 + bc - b^2)^2 / [(a + b)(a + c)(b + c)]^2
Thay vào vế phải, ta được:
VP=(b^2c^2 + a^2c^2 + a^2b^2) / (a^2b^2c^2) = [(-a - c)^2c^2 + a^2(-a - b)^2 + a^2(-b - c)^2] / [(-a - c)(-a - b)(-b - c)]^2
= (ac - c^2 + ab - a^2 + bc - b^2)^2 / [(a + b)(a + c)(b + c)]^2
Vế trái bằng vế phải, do đó:
(1/a + 1/b + 1/c)^2 = 1/a^2 + 1/b^2 + 1/c^2
=>đẳng thức được chứng minh
Bài 2
Bước 1: Thay x = 1 vào hàm số f(x) = ax + b, ta được:
f(1) = a.1 + b = a + b
Thay x = 2 vào hàm số f(x) = ax + b, ta được:
f(2) = a.2 + b = 2a + b
Có f(1) = 3 và f(2) = 5, ta có hệ phương trình:
{a + b = 3
2a + b = 5
Giải hệ ta đc
<=>a = 2
và b = 1.
=>f(x)=2x+1