Giả sử khi chảy một mình thì vòi thứ nhất chảy đầy bể trong x phút, vòi thứ hai trong y phút.
Điều kiện:\(x>0;y>0\)
Ta có 1 giờ 20 phút = 80 phút.
Trong 1 phút vòi thứ nhất chảy được \(\dfrac{1}{x}\) bể, vòi thứ hai chảy được \(\dfrac{1}{y}\) bể, cả hai vòi cùng chảy được \(\dfrac{1}{80}\)bể nên ta được: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{80}\)
Trong 10 phút vòi thứ nhất chảy được \(\dfrac{10}{x}\) bể, trong 12 phút vòi thứ hai chảy được \(\dfrac{12}{y}\) bể thì được \(\dfrac{2}{15}\) bể, ta được:
\(\dfrac{10}{x}+\dfrac{12}{y}=\dfrac{2}{15}\)
Ta có hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{80}\\\dfrac{10}{x}+\dfrac{12}{y}=\dfrac{2}{15}\end{matrix}\right.\)
Giải ra ta được \(x=120;y=240\)
Vậy nếu chảy một mình để đầy bể vòi thứ nhất chảy trong 120 phút (2 giờ), vòi thứ hai 240 phút (4 giờ).