Bài tập  /  Bài đang cần trả lời

Phân tích đa thức thành nhân tử

phân tích đa thức thành nhân tử
3, (3x+3y) + (x2 -y2)
4, x4 - y4
2 trả lời
Hỏi chi tiết
33
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để phân tích các đa thức đã cho thành nhân tử, chúng ta sẽ thực hiện từng ví dụ một.

### 1. Phân tích đa thức:
\[ P = 3(3x + 3y) + (x^2 - y^2) \]

Trước tiên, ta có thể lấy ra nhân tử chung cho hạng tử đầu tiên:
\[ P = 3(3(x + y)) + (x^2 - y^2) \]

Tiếp theo, nhận thấy rằng \( x^2 - y^2 \) là một hiệu của hai bình phương, ta sử dụng công thức:
\[ x^2 - y^2 = (x - y)(x + y) \]
Vì vậy, ta có:
\[ P = 9(x + y) + (x - y)(x + y) \]

Bây giờ, \( (x + y) \) là nhân tử chung trong cả hai hạng tử. Ta có thể nhóm lại để viết thành nhân tử:
\[ P = (x + y)(9 + (x - y)) \]
\[ P = (x + y)(x - y + 9) \]

### 2. Phân tích đa thức:
\[ Q = x^4 - y^4 \]

Giống như trước, đây là một hiệu của hai bình phương. Áp dụng công thức:
\[ a^2 - b^2 = (a - b)(a + b) \]

Ta có:
\[ Q = (x^2)^2 - (y^2)^2 = (x^2 - y^2)(x^2 + y^2) \]

Tiếp tục phân tích \( x^2 - y^2 \):
\[ x^2 - y^2 = (x - y)(x + y) \]

Do đó, ta có thể viết:
\[ Q = (x - y)(x + y)(x^2 + y^2) \]

### Kết quả cuối cùng:
1. Đối với đa thức \( 3(3x + 3y) + (x^2 - y^2) \):
\[ P = (x + y)(x - y + 9) \]

2. Đối với đa thức \( x^4 - y^4 \):
\[ Q = (x - y)(x + y)(x^2 + y^2) \]

Hy vọng rằng những phân tích trên sẽ giúp bạn hiểu rõ hơn về cách phân tích đa thức thành nhân tử!
2
0
Nguyên
24/08 15:20:47
+5đ tặng
3, (3x+3y) + (x2 -y2)
=3(x+y)+(x-y)(x+y)
=(x+y)(x-y+3)
x^4-y^4=(x^2+y^2)(x^2-y^2)=(x^2+y^2)(x-y)(x+y)

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
3
0
Đông
24/08 15:21:40
+4đ tặng
3, (3x + 3y) + (x^2 - y^2)
= 3(x + y) + (x - y)(x + y)
= (x + y)(x - y + 3)
4, x^4 - y^4
= (x^2 + y^2)(x^2 - y^2)
= (x^2 + y^2)(x - y)(x + y)

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập Toán học Lớp 8 mới nhất
Trắc nghiệm Toán học Lớp 8 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư