Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, kẻ CE vuông góc với AB. Gọi K là giao điểm của BD và CE. Chứng minh rằng AK là tia phân giác của góc A.

Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, kẻ CE vuông góc với AB. Gọi K là giao điểm của BD và CE. Chứng minh rằng AK là tia phân giác của góc A.

1 trả lời
Hỏi chi tiết
9
0
0

Xét ΔADB vuông tại D và ΔAEC vuông tại E, ta có:

AB = AC (giả thiết)

∠(BAC) chung

⇒ ΔADB = ΔAEC (cạnh huyền, góc nhọn)

⇒ AD = AE (hai cạnh tương ứng)

Xét ΔADK vuông tại D và ΔAEK vuông tại E có:

AD = AE (chứng minh trên)

AK cạnh chung

⇒ ΔADK = ΔAEK (cạnh huyền, cạnh góc vuông)

⇒ ∠(DAK) = ∠(EAK) (hai góc tương ứng)

Vậy AK là tia phân giác của góc BAC.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Trắc nghiệm Toán học Lớp 7 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư