Chứng minh rằng: Trong 5 số tự nhiên bất kì bao giờ cũng tồn tại 3 số có tổng chia hết cho 3.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ta có, một số a khi chia cho 3, số dư chỉ có thể là 0, 1, hoặc 2.
Theo nguyên lí Dirichle, trong 5 số tự nhiên bất kì khi chia cho 3, tồn tại ít nhất 2 số có cùng số dư.
Khi đó có các trường hợp sau:
TH1: Trong 5 số có từ 3 số trở lên có cùng số dư.
Gọi 3 dố trong các số đó là x, y, z khi chia cho 3 có cùng số dự thì x+y+z⋮3
TH2: Trong 5 số đó chỉ có 2 số có cùng số dư. Khi đó số dư chỉ có thể xảy ra các trường hợp sau:
0;0;1;1;2;0;1;1;2;2;0;0;1;2;2
Trong cả 3 trường hợp luôn tồn tại 3 số tự nhiên x, y, z khi chia cho 3 có các số dư khác nhau lần lượt là: 1; 2; 0 nên x+y+z⋮3
Vậy trong 5 số tự nhiên bất kì bao giờ cũng tồn tại 3 số có tổng chia hết cho 3.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |