Cho nửa đường tròn (O) đường kính AB. Lấy điểm D trên bán kính OB (khác O, B). Gọi H là trung điểm của AD. Đường vuông góc tại H với AB cắt nửa đường tròn tại C. Đường tròn tâm I đường kính BD cắt tiếp tuyến BC tại E.
a) Tứ giác ACED là hình gì?
b) Chứng minh tam giác CEH cân tại H và HE là tiếp tuyến của (I).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) ACED là hình thang vuông vì AC // DE (cùng vuông góc với BC)
b) Đặt AB = 2R, AD = 2x, DB = 2y thì HA = HD = x
Ta có các hệ thức sau:
x + y = R hay HI = R
OH = OA – OH = x + y – x = y
Hay OH = y
Xét tam giác OHC và tam giác EIH có:
OH = IE = y
\(\widehat {COH} = \widehat {HIE}\)(đồng vị)
OC = IH = R
⇒ ∆OHC = ∆IEH (c.g.c)
Suy ra: HC = EH hay tam giác HCE cân tại H
Lại có: do ∆OHC = ∆IEH nên \(\widehat {OHC} = \widehat {IEH} = 90^\circ \)
Tức HE vuông góc với IE
Vậy HE là tiếp tuyến của (I).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |