Cho tam giác ABC. Vẽ các tam giác đều ABM, ACN phía ngoài tam giác ABC. Gọi D, E, F lần lượt là trung điểm của BC, AM, AN. Chứng minh tam giác DEF đều.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Gọi I là trung điểm AB
Ta có: EI là đường trung bình của tam giác AMB
⇒ EI // MB
⇒ \(\widehat {AEI} = \widehat {AMB} = 60^\circ \)
Lại có: EI = \(\frac{1}{2}MB = AE;ID = \frac{1}{2}AC = AF\)
\(\widehat {EAF} = 360^\circ - 2.60^\circ - \widehat {BAC} = 240^\circ - \widehat {BAC}\)
\(\widehat {EID} = 360^\circ - 120^\circ - \widehat {BID} = 240^\circ - \widehat {BAC}\)(\(\widehat {BID} = \widehat {BAC}\) vì ID // AC)
Xét ∆EID và ∆AEF có:
EI = AE
\[\widehat {EID} = \widehat {EAF}\]
ID = AF
Suy ra: △EID = △ EAF (c.g.c)
⇒ DE = EF (*) và \(\widehat {IED} = \widehat {AEF}\)
Mà \(\widehat {AEI} = \widehat {IED} + \widehat {DAE} = 60^\circ \)
⇒ \(\widehat {AEF} + \widehat {DAE} = 60^\circ \) hay \(\widehat {DEF} = 60^\circ \)(**)
Từ (*) và (**) suy ra: DEF là tam giác đều.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |