Bài tập  /  Bài đang cần trả lời

Cho hình chóp \[S.ABCD\] có đáy là hình vuông cạnh 4, mặt bên \[SAB\] đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Khoảng cách từ \[B\] đến mặt phẳng \(\left( {SAC} \right)\) là \(\frac{{a\sqrt b }}{c}\). Tính \(a + b + c\). Đáp án: ……….

Cho hình chóp \[S.ABCD\] có đáy là hình vuông cạnh 4, mặt bên \[SAB\] đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Khoảng cách từ \[B\] đến mặt phẳng \(\left( {SAC} \right)\) là \(\frac{{a\sqrt b }}{c}\). Tính \(a + b + c\).

Đáp án: ……….

1 trả lời
Hỏi chi tiết
11
0
0
Tôi yêu Việt Nam
11/09 16:02:02

Kẻ \(SH \bot AB\) nên \(H\) là trung điểm của \[AB.\]

Do \(\left( {SAB} \right) \bot \left( {ABCD} \right) = AB\) và \(\left( {SAB} \right) \cap \left( {ABCD} \right) = AB\) nên từ \(SH \bot AB\) ta được \(SH \bot (ABCD)\).

Mặt khác ta có \(BA \cap \left( {SAC} \right) = \left\{ A \right\}\) và H là trung điểm của AB nên ta có \(d\left( {B,\left( {SAC} \right)} \right) = 2d\left( {H,\left( {SAC} \right)} \right)\).

Trong \(\left( {ABCD} \right)\) kẻ \(HK \bot AC\,\,(K \in AC)\) và trong \((SHK)\) kẻ \(HE \bot SK\,(E \in SK)\).

Ta có: \(SH \bot \left( {ABCD} \right) \Rightarrow SH \bot AC\)

Kết hợp với \(HK \bot AC\) ta được \(AC \bot (SHK) \Rightarrow AC \bot HE\).

Hơn nữa \(HE \bot SK\) nên \(HE \bot \left( {SAC} \right)\).

Vậy \(d\left( {H,\left( {SAC} \right)} \right) = HE \Rightarrow d\left( {B,\left( {SAC} \right)} \right) = 2HE\).

Trong \(\left( {ABCD} \right)\) ta có .

Mặt khác dễ thấy \(SH = \frac{{4\sqrt 3 }}{2} = 2\sqrt 3 \). Áp dụng hệ thức lượng trong \(\Delta SHK\), ta có:

\(\frac{1}{{H{E^2}}} = \frac{1}{{H{K^2}}} + \frac{1}{{S{H^2}}} \Rightarrow HE = \frac{{2\sqrt {21} }}{7} \Rightarrow d\left( {B,\left( {SAC} \right)} \right) = \frac{{4\sqrt {21} }}{7}{\rm{.}}\)

Suy ra \(a = 4,\,\,b = 21,\,\,c = 7.\) Vậy \(a + b + c = 32.\)

Đáp án: 32.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Tổng hợp Lớp 12 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k