Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
Số đường chéo của đa giác lồi n đỉnh là một cặp đỉnh (không tính n cạnh) được chọn trong n đỉnh của đa giác lồi nên ta có \(C_n^2 - n = \frac{{n!}}{{2!.\left( {n - 2} \right)!}} - n\).
Theo đề, ta có số đường chéo của đa giác đó là 170.
Tức là, \(\frac{{n!}}{{2!.\left( {n - 2} \right)!}} - n = 170\).
Suy ra \(\frac{{\left( {n - 2} \right)!.\left( {n - 1} \right).n}}{{2.\left( {n - 2} \right)!}} - n = 170\).
Khi đó (n – 1).n – 2n = 340.
Vì vậy n2 – 3n – 340 = 0.
Suy ra n = 20 hoặc n = –17.
Vì n > 3 nên ta nhận n = 20.
Vậy n = 20 là giá trị cần tìm.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |