Cho hình bình hành ABCD tâm O. M là một điểm tuỳ ý thuộc cạnh BC, khác B và C. MO cắt cạnh AD tại N.
Gọi G là trọng tâm tam giác BCD. Chứng minh rằng G cũng là trọng tâm tam giác MNC.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
Vì
G là trọng tâm ∆BCD nên \(\overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \)
\( \Rightarrow \left( {\overrightarrow {GM} + \overrightarrow {MB} } \right) + \overrightarrow {GC} + \left( {\overrightarrow {GN} + \overrightarrow {ND} } \right) = \overrightarrow 0 \) (quy tắc hiệu)
\( \Rightarrow \overrightarrow {GM} + \overrightarrow {MB} + \overrightarrow {GC} + \overrightarrow {GN} + \overrightarrow {ND} = \overrightarrow 0 \)
\[ \Rightarrow \overrightarrow {GM} + \overrightarrow {GC} + \overrightarrow {GN} + \left( {\overrightarrow {MB} + \overrightarrow {ND} } \right) = \overrightarrow 0 \] (*)
Ta có: O là trung điểm của NM (câu a), O là trung điểm của BD (câu a)
BMDN là hình bình hành
\( \Rightarrow \overrightarrow {BM} = \overrightarrow {ND} \) \( \Rightarrow - \overrightarrow {MB} = \overrightarrow {ND} \)
\( \Rightarrow \overrightarrow {MB} + \overrightarrow {ND} = \overrightarrow 0 \)
Thay vào (*) ta được \[\overrightarrow {GM} + \overrightarrow {GC} + \overrightarrow {GN} + \overrightarrow 0 = \overrightarrow 0 \]
Do đó \[\overrightarrow {GM} + \overrightarrow {GC} + \overrightarrow {GN} = \overrightarrow 0 \]
G là trọng tâm tam giác MNC.
Vậy G là trọng tâm tam giác MNC.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |