Cho đường tròn (O; R), đường kính AB. Vẽ dây AC sao cho \(\widehat {CAB} = 30^\circ \). Trên tia đối của tia BA, lấy điểm M sao cho BM = R. Chứng minh:
a) MC là tiếp tuyến của đường tròn (O).
b) MC2 = 3R2.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
Ta có BM = R
OA = OB = R
B nằm giữa M và O (vì M thuộc tia đối của tia BA)
Suy ra B là trung điểm của OM
Vì tam giác ABC nội tiếp (O) đường kính AB
Nên tam giác ABC vuông tại C
Suy ra \(\widehat {CAB} + \widehat {CBA} = 90^\circ \) (trong tam giác vuông, tổng hai góc nhọn bằng 90°)
Mà \(\widehat {CAB} = 30^\circ \), nên \(\widehat {CBA} = 60^\circ \)
Lại có tam giác OBC cân tại O (vì OB = OC)
Suy ra tam giác OBC đều. Do đó OB = CB, \(\widehat {COB} = 60^\circ \)
Mà OB = BM, suy ra \[{\rm{OB }} = BM = CM = \frac{1}{2}OM\]
Xét tam giác OCM có
\[{\rm{OB }} = BM = CM = \frac{1}{2}OM\]
CM là trung tuyến
Suy ra tam giác OCM vuông tại C
Do đó CO ⊥ CM
Xét (O) có CO ⊥ CM (chứng minh trên)
MC là tiếp tuyến của đường tròn (O)
b) Xét tam giác OCM vuông ở C có \(\widehat {COM} + \widehat {CMO} = 90^\circ \) (trong tam giác vuông, tổng hai góc nhọn bằng 90°)
Mà \(\widehat {COM} = 60^\circ \), nên \(\widehat {CMO} = 30^\circ \)
Suy ra \(\widehat {CMO} = \widehat {CAM}\left( { = 30^\circ } \right)\)
Xét DMCB và DMAC có
\(\widehat {CMO} = \widehat {CAM}\) (chứng minh trên)
\(\widehat M\) là góc chung
Suy ra (g.g)
Do đó \(\frac = \frac\)
Suy ra MC2 = MA . MB = (OA + OB + BM) . MB = 3R . R = 3R2.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |