Tham khảo câu trả lời từ Trợ lý ảo Lazi Dưới đây là các hệ phương trình được giải: **Hệ 10:** \[ \begin{cases} 2x + 3y = -2 \\ 2x - y = 2 \end{cases} \] Giải hệ: - Từ phương trình thứ hai: \( y = 2x - 2 \) - Thay vào phương trình thứ nhất: \[ 2x + 3(2x - 2) = -2 \implies 2x + 6x - 6 = -2 \implies 8x = 4 \implies x = \frac{1}{2} \] - Thay \( x = \frac{1}{2} \) vào \( y = 2(\frac{1}{2}) - 2 \) ta có \( y = -1 \). Vậy nghiệm là \( (x, y) = \left(\frac{1}{2}, -1\right) \). --- **Hệ 11:** \[ \begin{cases} x + 3y = 11 \\ 3x - y = 9 - 2y \end{cases} \] Giải hệ: - Phương trình thứ hai trở thành \( 3x + y = 9 \) - Thay \( y = \frac{11 - x}{3} \) vào phương trình thứ hai: \[ 3x + \frac{11 - x}{3} = 9 \implies 9x + 11 - x = 27 \implies 8x = 16 \implies x = 2 \] - Thay \( x = 2 \) vào \( y = \frac{11 - 2}{3} = 3 \). Vậy nghiệm là \( (x, y) = (2, 3) \). --- **Hệ 12:** \[ \begin{cases} 2x - 3y = 6 \\ x + 2y = 10 \end{cases} \] Giải hệ: - Từ phương trình thứ hai: \( x = 10 - 2y \) - Thay vào phương trình thứ nhất: \[ 2(10 - 2y) - 3y = 6 \implies 20 - 4y - 3y = 6 \implies 20 - 7y = 6 \implies 7y = 14 \implies y = 2 \] - Thay \( y = 2 \) vào \( x = 10 - 2(2) = 6 \). Vậy nghiệm là \( (x, y) = (6, 2) \). --- **Hệ 13:** \[ \begin{cases} 9x - 5y = -6 \\ 6x + y = 9 \end{cases} \] Giải hệ: - Từ phương trình thứ hai: \( y = 9 - 6x \) - Thay vào phương trình thứ nhất: \[ 9x - 5(9 - 6x) = -6 \implies 9x - 45 + 30x = -6 \implies 39x = 39 \implies x = 1 \] - Thay \( x = 1 \) vào \( y = 9 - 6(1) = 3 \). Vậy nghiệm là \( (x, y) = (1, 3) \). --- **Hệ 14:** \[ \begin{cases} -x + y = -5 \\ 3x + 5y = -1 \end{cases} \] Giải hệ: - Từ phương trình đầu tiên: \( y = x - 5 \) - Thay vào phương trình thứ hai: \[ 3x + 5(x - 5) = -1 \implies 3x + 5x - 25 = -1 \implies 8x = 24 \implies x = 3 \] - Thay \( x = 3 \) vào \( y = 3 - 5 = -2 \). Vậy nghiệm là \( (x, y) = (3, -2) \). --- **Hệ 15:** \[ \begin{cases} -2x + 3y = 5 \\ 3x + y = -2 \end{cases} \] Giải hệ: - Từ phương trình thứ hai: \( y = -2 - 3x \) - Thay vào phương trình thứ nhất: \[ -2x + 3(-2 - 3x) = 5 \implies -2x - 6 - 9x = 5 \implies -11x = 11 \implies x = -1 \] - Thay \( x = -1 \) vào \( y = -2 - 3(-1) = 1 \). Vậy nghiệm là \( (x, y) = (-1, 1) \). --- Tóm tắt các nghiệm của hệ phương trình: 1. Hệ 10: \( (x, y) = \left(\frac{1}{2}, -1\right) \) 2. Hệ 11: \( (x, y) = (2, 3) \) 3. Hệ 12: \( (x, y) = (6, 2) \) 4. Hệ 13: \( (x, y) = (1, 3) \) 5. Hệ 14: \( (x, y) = (3, -2) \) 6. Hệ 15: \( (x, y) = (-1, 1) \)