Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải:
Gọi AD là đường cao của tam giác ABC.
Ta có: \(S = \frac{1}{2}AD.BC = 24\) (cm2), suy ra AD = 4,8 cm.
Xét tam giác ACD vuông tại D, ta có: \(\sin C = \frac = \frac{{4,8}}{6} = \frac{4}{5}\).
Vì \(0^\circ < \widehat C < 90^\circ \) (do tam giác ABC nhọn) nên cos C > 0.
Do sin2 C + cos2 C = 1 nên ta suy ra cos C = \(\frac{3}{5}\).
Áp dụng định lí côsin trong tam giác ABC ta có:
AB2 = BC2 + AC2 – 2 BC . AC . cos C = 102 + 62 – 2 . 10 . 6 . \(\frac{3}{5}\) = 64.
Suy ra AB = 8 cm. Vậy c = AB = 8 cm.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |