Xác định Parabol y = ax2 + bx + c, biết parabol có đỉnh nằm trên trục hoành và đi qua hai điểm A(0; 1) và B(2; 1).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Do đồ thị hàm số (P) đi qua A nên ta có c = 1.
(P) có đỉnh nằm trên trục hoành nên:
−Δ4a=0⇒Δ=0
⇔ b2 – 4ac = 0
⇔ b2 = 4ac = 4a
⇔a=b24(1)
Do đồ thị hàm số (P) đi qau B(2; 1) nên:
4a + 2b + c = 1
⇔ 4a + 2b = 0
Thay (1) vào ta có:
b2 + 2b = 0
⇔b=0b=−2
Với b = 0 suy ra a = 0 (loại)
Với b = −2 suy ra a = 1 (thỏa mãn)
Vậy phương trình cần tìm là: y = x2 – 2x + 1.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |