LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC có \(\widehat A = 60^\circ \). Các tia phân giác của \(\widehat B\) và \(\widehat C\) cắt nhau ở I, cắt cạnh AC, AB ở D và E. Tia phân giác của \(\widehat {BIC}\) cắt BC ở F. a) Tính \(\widehat {BIC}\). b) Chứng minh ID = IE = IF. c) Chứng minh tam giác DEF đều. d) Chứng minh I là giao điểm các đường phân giác của hai tam giác ABC và DEF.

Cho tam giác ABC có \(\widehat A = 60^\circ \). Các tia phân giác của \(\widehat B\) và \(\widehat C\) cắt nhau ở I, cắt cạnh AC, AB ở D và E. Tia phân giác của \(\widehat {BIC}\) cắt BC ở F.

a) Tính \(\widehat {BIC}\).

b) Chứng minh ID = IE = IF.

c) Chứng minh tam giác DEF đều.

d) Chứng minh I là giao điểm các đường phân giác của hai tam giác ABC và DEF.

1 trả lời
Hỏi chi tiết
7
0
0
Phạm Minh Trí
13/09 22:48:52

a) Ta có BI, CI lần lượt là tia phân giác của \(\widehat {ABC}\) và \(\widehat {ACB}\).

Suy ra \(2\widehat {IBC} = \widehat {ABC}\) và \(2\widehat {ICB} = \widehat {ACB}\).

∆ABC, có: \(\widehat {BAC} + \widehat {ABC} + \widehat {ACB} = 180^\circ \) (định lí tổng ba góc trong một tam giác).

Suy ra \(\widehat {ABC} + \widehat {ACB} = 180^\circ - \widehat {BAC} = 180^\circ - 60^\circ = 120^\circ \).

Do đó \(2\left( {\widehat {IBC} + \widehat {ICB}} \right) = 120^\circ \).

Vì vậy \(\widehat {IBC} + \widehat {ICB} = 120^\circ :2 = 60^\circ \).

∆BIC, có: \(\widehat {BIC} = 180^\circ - \left( {\widehat {IBC} + \widehat {ICB}} \right) = 180^\circ - 60^\circ = 120^\circ \).

Vậy \(\widehat {BIC} = 120^\circ \).

b) Ta có \(\widehat {EIB} + \widehat {BIC} = 180^\circ \) (kề bù).

Suy ra \(\widehat {EIB} = 180^\circ - \widehat {BIC} = 180^\circ - 120^\circ = 60^\circ \).

Chứng minh tương tự, ta được \(\widehat {DIC} = 60^\circ \).

Ta có IF là tia phân giác của \(\widehat {BIC}\).

Suy ra \(\widehat {BIF} = \widehat {FIC} = \frac{{\widehat {BIC}}}{2} = 60^\circ \).

Xét ∆IFC và ∆IDC, có:

IC là cạnh chung;

\(\widehat {ICF} = \widehat {ICD}\) (CI là tia phân giác của \(\widehat {FCD}\));

\(\widehat {FIC} = \widehat {DIC}\,\,\left( { = 60^\circ } \right)\).

Do đó ∆IFC = ∆IDC (g.c.g).

Suy ra IF = ID (cặp cạnh tương ứng)     (1)

Chứng minh tương tự, ta được: IE = IF     (2)

Từ (1), (2), ta thu được ID = IE = IF.

c) Ta có:

⦁ \(\widehat {EIF} = \widehat {EIB} + \widehat {BIF} = 60^\circ + 60^\circ = 120^\circ \).

⦁ \(\widehat {DIF} = \widehat {DIC} + \widehat {CIF} = 60^\circ + 60^\circ = 120^\circ \).

Xét ∆EIF và ∆DIF, có:

IF là cạnh chung;

\(\widehat {EIF} = \widehat {DIF}\,\,\left( { = 120^\circ } \right)\);

IE = ID (kết quả câu b).

Do đó ∆EIF = ∆DIF (c.g.c).

Suy ra EF = DF (cặp cạnh tương ứng)       (3)

Ta có \(\widehat {DIE} = \widehat {BIC} = 120^\circ \) (đối đỉnh).

Xét ∆DIE và ∆FIE, có:

EI là cạnh chung;

ID = IF (kết quả câu b);

\(\widehat {DIE} = \widehat {FIE}\,\,\left( { = 120^\circ } \right)\).

Do đó ∆DIE = ∆FIE (c.g.c).

Suy ra DE = EF (cặp cạnh tương ứng)       (4)

Từ (3), (4), suy ra DE = EF = DF.

Vậy tam giác DEF đều.

d) Tam giác ABC có hai đường phân giác BD, CE cắt nhau tại I.

Suy ra I là giao điểm của ba đường phân giác của tam giác ABC    (5)

Ta có ∆EIF = ∆DIF (chứng minh trên).

Suy ra \(\widehat {EFI} = \widehat {DFI}\) (cặp góc tương ứng).

Do đó FI là đường phân giác của tam giác DEF.

Chứng minh tương tự, ta được EI là đường phân giác của tam giác DEF.

Tam giác DEF có hai đường phân giác FI, EI cắt nhau tại I.

Suy ra I là giao điểm của ba đường phân giác của tam giác DEF    (6)

Từ (5), (6), ta thu được I là giao điểm các đường phân giác của hai tam giác ABC và DEF.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 12 mới nhất
Trắc nghiệm Toán học Lớp 12 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư