Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải:
Gọi M là trung điểm của BC.
Ta có: O.ABC là hình chóp tam giác đều nên OA = OB = OC.
Vì I là tâm tam giác đều ABC nên \({\mathop{\rm I}\nolimits} M = \frac{1}{2}IA\). (1)
Tam giác OBC vuông cân tại O nên OM vừa là đường cao, vừa là đường phân giác, vừa là đường trung tuyến.
Suy ra \(OM = \frac{1}{2}BC\) hay 2OM = BC.
Tam giác vuông cân OBC có 2OB2 = BC2.
Do đó: 2OB2 = 4OM2. Suy ra OM2 = \(\frac{1}{2}\)OA2. (2)
Tam giác OIM vuông tại I có: OI2 + IM2 = OM2. (3)
Mà OI2 = OA2 – IA2 (tam giác OIA vuông tại I) (4)
Thay (1), (2), (4) vào (3) ta được: \(O{A^2} - I{A^2} + \frac{1}{4}I{A^2} = \frac{1}{2}O{A^2}\).
Suy ra \(\frac{{I{A^2}}}{{O{A^2}}} = \frac{2}{3}\) nên \(\frac = \frac{{\sqrt 6 }}{3}\).
Mà IA = O'A' (do AIO'A' là hình bình hành).
Do đó, p = q = r = \(\frac{{O'A'}} = \frac{{\sqrt 6 }}{3}\).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |