Cho tam giác ABC cân ở A, H là trung điểm của BC và Đường vuông góc với AB tại A cắt đường thẳng BC ở D. Kẻ DE vuông góc với AC. Chứng minh:
a) AH = EH;
b) DCE^=ABD^.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Do tam giác ABC cân tại A có AH là trung tuyến của tam giác nên đồng thời là đường cao của tam giác và đường phân giác của góc BAC, nên BAH^=HAC^ (1)
Do ∆AHD vuông tại H nên H thuộc đường tròn đường kính AD.
Do ∆AED vuông tại E nên E thuộc đường tròn đường kính AD.
Do đó tứ giác AHED nội tiếp đường tròn đường kính AD, suy ra ADH^=AEH^ (2) (hai góc nội tiếp cùng chắn cung AH).
Mặt khác ADH^=BAH^ (3) (vì cùng phụ với HAD^)
Từ (1), (2) và (3) suy ra HAC^=AEH^.
Do đó, tam giác HAE cân tại H nên AH = EH.
b) Xét ∆AHB và ∆AHC có:
AB = AC (do ∆ABC cân tại A);
HB = HC (do H là trung điểm của BC);
AH là cạnh chung
Do đó ∆AHB = ∆AHC (c.c.c)
Suy ra ABH^=ACH^ (hai góc tương ứng).
Mà ACH^=DCE^ nên DCE^=ABD^.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |