Viết phương trình mặt cầu (S) trong mỗi trường hợp sau:
a) (S) có tâm I(−5; 7; 6) và có bán kính R = 9.
b) (S) có tâm I(0; −3; 0) và đi qua điểm M(4; 0; −2).
c) (S) có đường kính EF với E(1; 5; 9), F(11; 3; 1).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) (S) có tầm I(−5; 7; 6) và bán kính R = 9 nên có phương trình là:
(x + 5)2 + (y – 7)2 + (z – 6)2 = 92 hay (x + 5)2 + (y – 7)2 + (z – 6)2 = 81.
b) (S) có tâm I(0; −3; 0) và đi qua điểm M(4; 0; −2) có:
Bán kính R = IM = \[\sqrt {{{\left( {4 - 0} \right)}^2} + {{\left( {0 - \left( { - 3} \right)} \right)}^2} + {{\left( { - 2 - 0} \right)}^2}} = \sqrt {29} \].
Phương trình mặt cầu (S) là: x2 + (y + 3)2 + z2 = 29.
c) Tâm I của mặt cầu (S) đường kính EF chính là trung điểm của EF.
Do đó, ta có: \[\left\{ \begin{array}{l}{x_I} = \frac{2} = 6\\{y_I} = \frac{2} = 4\\{z_1} = \frac{2} = 5\end{array} \right.\] ⇒ I(6; 4; 5).
Bán kính R = IE = \[\sqrt {{{\left( {6 - 1} \right)}^2} + {{\left( {5 - 4} \right)}^2} + {{\left( {9 - 5} \right)}^2}} = \sqrt {42} \].
Vậy phương trình mặt cầu (S) là: (x – 6)2 + (y – 4)2 + (z – 5)2 = 42.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |