LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sau: Trên mặt phẳng tọa độ \(Oxy\), cho elip có phương trình \(\left( E \right):\frac{{{x^2}}}{4} + {y^2} = 1\) và điểm \(A\left( {1;\frac{{\sqrt 3 }}{2}} \right)\) thuộc \(\left( E \right)\). Tiếp tuyến \(d\) của \(\left( E \right)\) tại \(A\) có hệ số góc là _______. Diện tích hình phẳng \(\left( H \right)\) giới hạn bởi ba đường: elip, đường thẳng \(d\) và trục \(Ox\) bằng _______ -_______\(\pi \).

Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sau:

Trên mặt phẳng tọa độ \(Oxy\), cho elip có phương trình \(\left( E \right):\frac{{{x^2}}}{4} + {y^2} = 1\) và điểm \(A\left( {1;\frac{{\sqrt 3 }}{2}} \right)\) thuộc \(\left( E \right)\).

Tiếp tuyến \(d\) của \(\left( E \right)\) tại \(A\) có hệ số góc là _______.

Diện tích hình phẳng \(\left( H \right)\) giới hạn bởi ba đường: elip, đường thẳng \(d\) và trục \(Ox\) bằng _______ -_______\(\pi \).

1 trả lời
Hỏi chi tiết
8
0
0
Tô Hương Liên
11/11 12:31:18

Đáp án

Trên mặt phẳng tọa độ \(Oxy\), cho elip có phương trình \(\left( E \right):\frac{{{x^2}}}{4} + {y^2} = 1\) và điểm \(A\left( {1;\frac{{\sqrt 3 }}{2}} \right)\) thuộc \(\left( E \right)\).

Tiếp tuyến \(d\) của \(\left( E \right)\) tại \(A\) có hệ số góc là \(\frac{{\sqrt 3 }}{6}\).

Diện tích hình phẳng \(\left( H \right)\) giới hạn bởi ba đường: elip, đường thẳng \(d\) và trục \(Ox\) bằng \(\sqrt 3 \) - \(\frac{1}{3}\) \(\pi \).

Giải thích

Phương trình nửa trên của elip \(\left( E \right)\) là \(y = \sqrt {1 - \frac{{{x^2}}}{4}} \) suy ra \(y' = \frac{{ - x}}{{4\sqrt {1 - \frac{{{x^2}}}{4}} }}\).

Phương trình tiếp tuyến với \(\left( E \right)\) tại \(A\left( {1;\frac{{\sqrt 3 }}{2}} \right)\) là

\(y = y'\left( 1 \right)\left( {x - 1} \right) + y\left( 1 \right) = \frac{{ - \sqrt 3 }}{6}\left( {x - 1} \right) + \frac{{\sqrt 3 }}{2}\) hay \(y = \frac{{ - \sqrt 3 }}{6}x + \frac{{2\sqrt 3 }}{3}\).

Đường thẳng \(d\) cắt trục hoành tại \(B\left( {4;0} \right)\). Hình phẳng \(\left( H \right)\) có ba đỉnh \(A,B\) và \(C\left( {2;0} \right)\).

Kẻ \(AK\) vuông góc với trục hoành, khi đó diện tích của hình \(\left( H \right)\) là \({S_{\left( H \right)}} = {S_{AKB}} - {S_1}\left( \right.\) là diện tích giới hạn bởi \(AK\), trục \(Ox\) và \(\left( E \right)\)).

Ta có: \(AK = \frac{{\sqrt 3 }}{2},KB = 3\) nên \({S_{AKB}} = \frac{1}{2}AK.KB = \frac{{3\sqrt 3 }}{4}\).

Những điểm thuộc hình \(\left( H \right)\) có tung độ \(y \ge 0\) nên từ phương trình \(\left( E \right)\) suy ra \(y = \frac{1}{2}\sqrt {4 - {x^2}} \).

Do đó

Đặt \(x = 2{\rm{sin}}t\), ta tính được \({S_1} = \int\limits_{\frac{\pi }{6}}^{\frac{\pi }{2}} {2{\rm{co}}{{\rm{s}}^2}t{\rm{\;d}}t = \frac{\pi }{3} - \frac{{\sqrt 3 }}{4}} \).

Vậy \({S_{\left( H \right)}} = {S_{AKB}} - {S_1} = \sqrt 3  - \frac{\pi }{3}\).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Tổng hợp Lớp 12 mới nhất
Trắc nghiệm Tổng hợp Lớp 12 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư