Cho hàm số \(y = f\left( x \right)\)có đồ thị hàm số như hình bên dưới
a) Hàm số \(f\left( x \right)\) đồng biến trên từng khoảng xác định\(\left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right)\).
b) Hàm số \(f\left( x \right)\) đạt cực đại tại\(x = - 1\)và đạt cực tiểu tại \(x = 3\).
c) Đồ thị hàm số\(f\left( x \right)\)ở hình trên là của hàm số \(y = f\left( x \right) = \frac{{{x^2} + 2x + 1}}\).
d) Điểm M trên đồ thị hàm số \(f\left( x \right)\) có khoảng cách đến I là nhỏ nhất (với I là giao điểm của hai tiệm cận) với hoành độ dương là\(\sqrt {2\sqrt 2 } + 1\).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) S, b) Đ, c) Đ, d) Đ
a) Hàm số \(f\left( x \right)\)đồng biến trên từng khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( {3; + \infty } \right)\).
b) Điểm cực đại của đồ thị hàm số \(f\left( x \right)\) là \(\left( { - 1;0} \right)\)và điểm cực tiểu của đồ thị hàm số \(f\left( x \right)\) là \(\left( {3;8} \right)\).
c) Dựa vào đồ thị hàm số ta thấy \(x = 1\) là tiệm cận đứng của đồ thị hàm số, \(y = x + 3\) là tiệm cận xiên của đồ thị hàm số.
Đồ thị hàm số đi qua các điểm \(\left( {3;8} \right),\left( { - 1;0} \right),\left( {0; - 1} \right)\).
Ta thấy hàm số \(y = f\left( x \right) = \frac{{{x^2} + 2x + 1}}\) có \(x = 1\) là tiệm cận đứng của đồ thị hàm số, \(y = x + 3\) là tiệm cận xiên của đồ thị hàm số và đồ thị hàm số đi qua các điểm \(\left( {3;8} \right),\left( { - 1;0} \right),\left( {0; - 1} \right)\).
Vậy đồ thị hàm số trên là của hàm số \(y = f\left( x \right) = \frac{{{x^2} + 2x + 1}}\).
d) Đồ thị hàm số\(f\left( x \right)\)ở hình câu c là của hàm số \(y = f\left( x \right) = \frac{{{x^2} + 2x + 1}} = x + 3 + \frac{4}\) ( C )
Có \(I\left( {1;4} \right)\)là giao điểm của hai đường tiệm cận.
Gọi \(M\left( {x;y} \right) \in \left( C \right)\). Khi đó \(\overrightarrow {IM} = \left( {x - 1;y - 4} \right)\), bình phương khoảng cách IM:
\(\begin{array}{l}I{M^2} = {\left( {x - 1} \right)^2} + {\left( {y - 4} \right)^2}\\I{M^2} = {\left( {x - 1} \right)^2} + {\left( {x + 3 + \frac{4} - 4} \right)^2}\end{array}\)
\(\begin{array}{l}I{M^2} = {\left( {x - 1} \right)^2} + {\left( {x - 1 + \frac{4}} \right)^2}\\I{M^2} = {\left( {x - 1} \right)^2} + {\left( {x - 1} \right)^2} + 8 + {\left( {\frac{4}} \right)^2}\end{array}\)
\[I{M^2} = 2{\left( {x - 1} \right)^2} + \frac{{{{\left( {x - 1} \right)}^2}}} + 8\]
Theo bất đẳng thức Cauchy (AM – GM)
\[\begin{array}{l}I{M^2} \ge 2\sqrt {32} + 8 = 8\sqrt 2 + 8\\IM \ge \sqrt {8\sqrt 2 + 8} \end{array}\]
Dấu xảy ra khi \[2{\left( {x - 1} \right)^2} = \frac{{{{\left( {x - 1} \right)}^2}}}\]\[ \Leftrightarrow {\left( {x - 1} \right)^4} = 8\]\[ \Leftrightarrow x = \pm \sqrt {2\sqrt 2 } + 1\].
Điểm M trên đồ thị hàm số \(f\left( x \right)\) có khoảng cách đến I là nhỏ nhất \[Min\,IM = \sqrt {8\sqrt 2 + 8} \](với I là giao điểm của hai tiệm cận) với hoành độ dương là\(\sqrt {2\sqrt 2 } + 1\).
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |