Cho hàm số \(y = f(x) = {x^3} - 3x - 2\).
a) Hàm số đồng biến trên khoảng \(\left( { - 1;1} \right)\).
b) Hàm số đạt cực tiểu tại \(x = 1\).
c) Giá trị lớn nhất của hàm số trên đoạn \(\left[ { - 1;1} \right]\) bằng \( - 4\).
d) Giá trị nhỏ nhất của hàm số \(y = f(2x)\) trên đoạn \(\left[ { - \frac{1}{2};\frac{1}{2}} \right]\) bằng \( - 4\).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) S, b) Đ, c) S, d) Đ
Ta có \(y = f(x) = {x^3} - 3x - 2\) có \(y' = 3{x^2} - 3\)
\(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = - 1\end{array} \right.\)
Bảng biến thiên
Dựa vào bảng biến thiên, ta có:
a) Hàm số nghịch biến trên khoảng \(\left( { - 1;1} \right)\).
b) Hàm số đạt cực tiểu tại \(x = 1\).
c) Giá trị lớn nhất của hàm số trên đoạn \(\left[ { - 1;1} \right]\) bằng \(0\).
d) Ta có \(x \in \left[ { - \frac{1}{2};\frac{1}{2}} \right] \Leftrightarrow 2x \in \left[ { - 1;1} \right]\)
Đặt \(t = 2x,t \in \left[ { - 1;1} \right]\) , \(f(t) = {t^3} - 3t - 2\)
Theo câu a có giá trị nhỏ nhất của hàm số trên đoạn \(\left[ { - 1;1} \right]\) bằng \( - 4\) .
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |