Bài tập  /  Bài đang cần trả lời

Giải bài có thưởng!

Cho B = 4 + 4^2 + 4^3 + 4^4 + ... + 4^100. Tính 3B + 4

Câu 19: Cho A = 3+32 + 33 +34 +…+3*
Câu 20: Cho B = 4+42 +43 +44+ +4100. Tính 3B+4.
...
Câu 21: Cho C = 5+52 +53 +54 + ... +5100 Tính 4C +5.
0 Xem trả lời
Hỏi chi tiết
23
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Let's solve the problems step by step.

### Câu 19: Tính 2A + 3

Cho \( A = 3 + 3^2 + 3^3 + 3^4 + \ldots + 3^{100} \).

Đây là một cấp số nhân có công bội \( q = 3 \) và số hạng đầu \( a = 3 \).

Số hạng cuối là \( 3^{100} \). Số lượng số hạng là \( 100 \) (từ \( n=1 \) đến \( n=100 \)).

Công thức tổng của cấp số nhân là:

\[
S_n = a \frac{q^n - 1}{q - 1}
\]

Áp dụng vào đây:

\[
A = 3 \cdot \frac{3^{100} - 1}{3 - 1} = 3 \cdot \frac{3^{100} - 1}{2}
\]

Bây giờ tính \( 2A + 3 \):

\[
2A = 2 \cdot 3 \cdot \frac{3^{100} - 1}{2} = 3^{101} - 3
\]
\[
2A + 3 = 3^{101} - 3 + 3 = 3^{101}
\]

### Kết quả Câu 19: \( 3^{101} \)

---

### Câu 20: Tính 3B + 4

Cho \( B = 4 + 4^2 + 4^3 + 4^4 + \ldots + 4^{100} \).

Tương tự, đây cũng là một cấp số nhân với \( a = 4 \) và \( q = 4 \).

Số hạng cuối là \( 4^{100} \), và số hạng là \( 100 \).

Áp dụng công thức tổng:

\[
B = 4 \cdot \frac{4^{100} - 1}{4 - 1} = 4 \cdot \frac{4^{100} - 1}{3}
\]

Bây giờ tính \( 3B + 4 \):

\[
3B = 3 \cdot 4 \cdot \frac{4^{100} - 1}{3} = 4 \cdot (4^{100} - 1) = 4^{101} - 4
\]
\[
3B + 4 = 4^{101} - 4 + 4 = 4^{101}
\]

### Kết quả Câu 20: \( 4^{101} \)

---

### Câu 21: Tính 4C + 5

Cho \( C = 5 + 5^2 + 5^3 + 5^4 + \ldots + 5^{100} \).

Cấp số nhân này có \( a = 5 \), \( q = 5 \), số hạng cuối là \( 5^{100} \), và số hạng là \( 100 \).

Áp dụng công thức tổng:

\[
C = 5 \cdot \frac{5^{100} - 1}{5 - 1} = 5 \cdot \frac{5^{100} - 1}{4}
\]

Bây giờ tính \( 4C + 5 \):

\[
4C = 4 \cdot 5 \cdot \frac{5^{100} - 1}{4} = 5 \cdot (5^{100} - 1) = 5^{101} - 5
\]
\[
4C + 5 = 5^{101} - 5 + 5 = 5^{101}
\]

### Kết quả Câu 21: \( 5^{101} \)

---

### Tổng kết:
- Câu 19: \( 3^{101} \)
- Câu 20: \( 4^{101} \)
- Câu 21: \( 5^{101} \)

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×