Tham khảo câu trả lời từ Trợ lý ảo Lazi To find the limit \[ \lim_{x \to 0} \frac{\sqrt{1 + 2x} - x - 4}{x^2} \] we can start by substituting \(x = 0\): \[ \sqrt{1 + 2(0)} - 0 - 4 = \sqrt{1} - 0 - 4 = 1 - 4 = -3 \] So the expression becomes: \[ \frac{-3}{0} \] Since this leads to an indeterminate form, we will need to apply L'Hôpital's Rule. This rule states that if we encounter a limit that gives a \( \frac{0}{0} \) or \( \frac{\infty}{\infty} \) form, we can take the derivative of the numerator and the derivative of the denominator separately. 1. **Differentiate the numerator**: - The derivative of \( \sqrt{1 + 2x} \) is \( \frac{1}{2\sqrt{1 + 2x}} \cdot 2 = \frac{1}{\sqrt{1 + 2x}} \). - The derivative of \( -x \) is \(-1\). - The derivative of \(-4\) is \(0\). Thus, the derivative of the numerator is: \[ \frac{1}{\sqrt{1 + 2x}} - 1 \] 2. **Differentiate the denominator** \( x^2 \): The derivative is \(2x\). Now we apply L'Hôpital's Rule: \[ \lim_{x \to 0} \frac{\frac{1}{\sqrt{1 + 2x}} - 1}{2x} \] Substituting \(x = 0\) into the new limit gives: \[ \frac{\frac{1}{\sqrt{1 + 0}} - 1}{2(0)} = \frac{1 - 1}{0} = \frac{0}{0} \] Since we still have an indeterminate form, we apply L'Hôpital's Rule again. 1. **Differentiate the numerator again**: \[ \frac{d}{dx}\left( \frac{1}{\sqrt{1 + 2x}} - 1 \right) = -\frac{1}{2(1 + 2x)^{3/2}} \cdot 2 = -\frac{1}{(1 + 2x)^{3/2}} \] 2. **Differentiate the denominator**: The derivative of \(2x\) is \(2\). Now, we evaluate the limit: \[ \lim_{x \to 0} \frac{-\frac{1}{(1 + 2x)^{3/2}}}{2} \] Substituting \(x = 0\): \[ -\frac{1}{(1 + 0)^{3/2} \cdot 2} = -\frac{1}{1 \cdot 2} = -\frac{1}{2} \] Therefore, the final result is: \[ \lim_{x \to 0} \frac{\sqrt{1 + 2x} - x - 4}{x^2} = -\frac{1}{2} \]