LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Câu 9 trang 177 SGK Đại số và giải tích 11

1 trả lời
Hỏi chi tiết
297
0
0
Nguyễn Thị Nhài
12/12/2017 02:37:19
Bài 9. Cho hai hàm số: \(y = {1 \over {x\sqrt 2 }};y = {{{x^2}} \over {\sqrt 2 }}\) . Viết phương trình tiếp tuyến với đồ thị của mỗi hàm số đã cho tại giao điểm của chúng. Tính góc giữa hai tiếp tuyến kể trên.
Trả lời:
_ \({C_1}:y = f(x) = {1 \over {x\sqrt 2 }} \Rightarrow f'(x) =  - {1 \over {{x^2}\sqrt 2 }}\)
_ \({C_2}:y = g(x) = {{{x^2}} \over {\sqrt 2 }} \Rightarrow g'(x) = {{2x} \over {\sqrt 2 }} = x\sqrt 2 \)
_  Phương trình hoành độ giao điểm của (C1) và (C2) là:
\({1 \over {x\sqrt 2 }} = {{{x^2}} \over {\sqrt 2 }} \Leftrightarrow \left\{ \matrix{
x \ne 0 \hfill \cr
{x^3} = 1 \hfill \cr} \right. \Leftrightarrow x = 1 \Rightarrow y = {1 \over {\sqrt 2 }} = {{\sqrt 2 } \over 2}\)
Vậy giao điểm của (C1) và (C2) là \(A(1,{{\sqrt 2 } \over 2})\)
_ Phương trình tiếp tuyến của (C1) tại điểm A là:
\(\eqalign{
& y - {{\sqrt 2 } \over 2} = f'(1)(x - 1) \Leftrightarrow y - {{\sqrt 2 } \over 2} = - {1 \over {\sqrt 2 }}(x - 1) \cr
& \Leftrightarrow y = - {x \over {\sqrt 2 }} + \sqrt 2 \cr} \)
Tiếp tuyến này có hệ số góc \(k_1= {{ - 1} \over {\sqrt 2 }}\)
_ Phương trình tiếp tuyến của (C2) tại điểm \(A\) là:
\(\eqalign{
& y - {{\sqrt 2 } \over 2} = g'(1)(x - 1) \Leftrightarrow y - {{\sqrt 2 } \over 2} = \sqrt 2 (x - 1) \cr
& \Leftrightarrow y = x\sqrt 2 - {{\sqrt 2 } \over 2} \cr} \)
Tiếp tuyến này có hệ số góc \(k_2= \sqrt 2\)
_ Ta có: \({k_1}.{k_2} = ( - {1 \over {\sqrt 2 }})(\sqrt 2 ) =  - 1\)
⇒ Hai tiếp tuyến nói trên vuông góc với nhau
⇒ góc giữa hai tiếp tuyến bằng \(90^0\).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập Toán học Lớp 11 mới nhất
Trắc nghiệm Toán học Lớp 11 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư