Bài tập  /  Bài đang cần trả lời

Chứng minh rằng 8351634 + 8241142 chia hết cho 26

Bài tập: Chứng minh rằng
  1. 8351634 + 8241142 chia hết cho 26.
  2. A = n3 + 6n2 – 19n – 24 chia hết cho 6.
  3. B = (10n – 9n – 1) chia hết cho 27 với n thuộc N*.
4 trả lời
Hỏi chi tiết
1.054
1
0
Miner
01/05/2018 22:13:25
2.
Ta có: n^3 + 6n^2 -19n -24 = n^3 + 6n^2 - n - 18n -24 = (n^3 - n) + (6n^2 - 24) - 18n
= n(n^2 - 1) + 6(n - 4) - 18n = n(n - 1)(n + 1) + 6(n - 4) - 18n
Ta thấy: n(n - 1)(n + 1) là tích của 3 số tự nhiên liên tiếp nên chia hết cho 6 và 6(n - 4)
và 18n cũng chia hết cho 6 nên n(n - 1)(n + 1) + 6(n - 4) - 18n chia hết cho 6
Vậy n^3 + 6n^2 - 19n - 24 chia hết cho 6

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
0
0
Miner
01/05/2018 22:14:17
Sử dụng phương pháp quy nạp.
- Với n = 1, ta có 10^1 - 9x1 -1 = 0, chia hết cho 27.
- Giả sử (*) đúng với n = k (thuộc N*), tức là:
10^k - 9k - 1 chia hết cho 27
- Ta cần chứng minh (*) cũng đúng với cả n = k + 1, tức là:
10^(k+1) - 9(k+1) - 1 chia hết cho 27.
Thật vậy:
10^(k+1) - 9(k+1) - 1 = 10 x 10^k - 9k - 10 = 10 x (10^k - 9k -1) + 81k
10^k - 9k - 1 chia hết cho 27, nên lượng này nhân 10 lên cũng chia hết cho 27.
81 chia hết cho 27, nên 81k chia hết cho 27.
Vậy (*) đúng với mọi n thuộc N* (đpcm).
1
0
2
0

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập Toán học Lớp 8 mới nhất
Trắc nghiệm Toán học Lớp 8 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k