Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Bài 4 (trang 18 SGK Hình học 12): Cho hình bát diện đều ABCDEF.
Chứng minh rằng:
a)Các đoạn thẳng AF, BD và CE đôi một vuông góc với nhau và cắt nhau tại trung điểm mỗi đường.
b)ABFD, AEFC và BCDE là những hình vuông.
Lời giải:
a)Ta có: B, C, D, E cách đều A và F suy ra B, C, D, E cùng nằm trên mặt phẳng trung trực của đoạn thẳng AF (1)
- Trong mp(BCDE), ta có BC = CD = DE = EB
Suy ra tứ giác BCDE là hình thoi hoặc hình vuông (2)
- Mặt khác AB = AC = AD = AE (3)
Từ (1), (2) và (3) suy ra BCDE là hình vuông.
Vậy BD và CE vuông góc nhau và cắt nhau tại trung điểm mỗi đường.
Chứng minh như trên ta suy ra AF và BD, AF và CE vuông góc nhau và cắt nhau tại trung điểm mỗi đường.
b)Ta có: BCDE là hình vuông (chứng minh trên).
Tương tự, ABFD và AEFC cũng là những hình vuông.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |