Cho tam giác đều ABC cạnh bằng a, các đường cao là BM và CN. Gọi O là trung điểm cạnh BC.
a, Chứng minh B, C, M, N cùng thuộc đường tròn tâm O
b, Gọi G là giao điểm của BM và CN. Chứng minh điểm G nằm trong, điểm A nằm ngoài đối với đường tròn đường kính BC
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a, Ta có: BNC^=900 => N∈(O;BC2)
BMC^=900 => M∈(O;BC2)
=> B, C, M, N cùng thuộc đường tròn tâm (O;BC2)
b, ∆ABC đều có G là trực tâm đồng thời là trọng tâm
∆AOB vuông tại O có R = ON = a2
Ta có OA = a2-a24=a32 > R
=> A nằm ngoài (O)
Ta có OG = 13OA = a36 < R
=> G nằm ngoài (O)
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |