Xét dấu tam thức bậc hai h(x) = -0,006x2 + 1,2x – 30 trong bài toán khởi động và cho biết ở khoảng cách nào tính từ đầu cầu O thì vòm cầu: cao hơn mặt cầu, thấp hơn mặt cầu.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ta có h(x) = -0,006x2 + 1,2x – 30 là tam thức bậc hai. h(x) có ∆ = 1,22 – 4.(-0,006).(-30) = 0,72 > 0. Do đó tam thức có hai nghiệm phân biệt là x1 ≈ 170,7 và x2 ≈ 29,3 và a = - 0,006 < 0.
Ta có bảng xét dấu f(x) như sau:
Từ bảng xét dấu ta thấy f(x) dương trong khoảng (29,3; 170,7) và âm trong hai khoảng (-∞; 29,3) và (170,7; +∞).
Kết hợp với điều kiện 0 ≤ x ≤ 200 thì f(x) dương khi x ∈ (29,3; 170,7) và f(x) âm khi x ∈ [0; 29,3) và (170,7; 200].
Vậy với giá trị của x ∈ (29,3; 170,7) thì vòm cầu cao hơn mặt cầu, với giá trị của x nằm trong hai khoảng (-∞; 29,3) và (170,7; +∞) thì vòm cầu thấp hơn mặt cầu.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |