Trong không gian Oxyz, cho điểm A(1; 0; 2) và hai đường thẳng d: \(\frac{x}{1} = \frac{2} = \frac{z}{2}\), \(d':\frac{2} = \frac{2} = \frac{{ - 1}}\).
a) Xét vị trí tương đối của hai đường thẳng d và d'.
b) Viết phương trình đường thẳng D đi qua A và song song với đường thẳng d.
c) Viết phương trình mặt phẳng (P) chứa A và d.
d) Tìm giao điểm của đường thẳng d với mặt phẳng (Oxz).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Đường thẳng d đi qua điểm M(0; 1; 0) và có một vectơ chỉ phương \(\overrightarrow = \left( {1;2;2} \right)\).
Đường thẳng d' đi qua điển N(−1; −2; 3) và có một vectơ chỉ phương \(\overrightarrow = \left( {2;2; - 1} \right)\).
Có \(\overrightarrow {MN} = \left( { - 1; - 3;3} \right)\), \(\left[ {\overrightarrow ,\overrightarrow } \right] = \left( { - 6;5; - 2} \right) \ne \overrightarrow 0 \).
Có \(\overrightarrow {MN} .\left[ {\overrightarrow ,\overrightarrow } \right] = 6 - 15 - 6 = - 15 \ne 0\).
Suy ra d và d' chéo nhau.
b) Vì D // d nên đường thẳng D nhận \(\overrightarrow = \left( {1;2;2} \right)\) làm một vectơ chỉ phương.
Đường thẳng D đi qua A(1; 0; 2) và nhận \(\overrightarrow = \left( {1;2;2} \right)\) làm một vectơ chỉ phương có phương trình là \(\left\{ \begin{array}{l}x = 1 + t\\y = 2t\\z = 2 + 2t\end{array} \right.\).
c) Có \(\overrightarrow {AM} = \left( { - 1;1; - 2} \right)\), \(\left[ {\overrightarrow {AM} ,\overrightarrow } \right] = \left( {6;0; - 3} \right)\).
Mặt phẳng (P) đi qua A(1; 0; 2) và nhận \(\overrightarrow n = \frac{1}{3}\left[ {\overrightarrow {AM} ,\overrightarrow } \right] = \left( {2;0; - 1} \right)\) làm một vectơ pháp tuyến có phương trình là: 2(x – 1) – (z – 2) = 0 hay 2x – z = 0.
d) Mặt phẳng (Oxz) có phương trình là: y = 0.
Tọa độ giao điểm của đường thẳng d với mặt phẳng (Oxz) là nghiệm của hệ:
\(\left\{ \begin{array}{l}\frac{x}{1} = \frac{2} = \frac{z}{2}\\y = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = - \frac{1}{2}\\y = 0\\z = - 1\end{array} \right.\).
Vậy giao điểm cần tìm có tọa độ là \(\left( { - \frac{1}{2};0; - 1} \right)\).
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |