Cho hàm số \(y = f\left( x \right)\), có bảng xét dấu của \(f'\left( x \right)\) như sau:
\(x\) | \( - \infty \) | 1 | 2 | 3 | 4 | \( + \infty \) | |||||
\(f'\left( x \right)\) | \( - \) | 0 | + | 0 | + | 0 | \( - \) | 0 | + |
Biết \(f\left( 2 \right) + f\left( 6 \right) = 2f\left( 3 \right).\) Hỏi phương trình \(f\left( {{x^2} + 1} \right) = f\left( 3 \right)\) có tất cả bao nhiêu nghiệm?
Đáp án: ……….
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Xét hàm số \(y = f\left( {{x^2} + 1} \right)\) có \(y' = 2x \cdot f'\left( {{x^2} + 1} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{f'\left( {{x^2} + 1} \right) = 0}\end{array}} \right.\).
Dựa vào hình vẽ, ta thấy \(f'\left( x \right) = 0 \Leftrightarrow x \in \left\{ {1\,;\,\,3\,;\,\,4} \right\}\) (loại nghiệm kép \(x = 2\))
Khi đó \(f'\left( {{x^2} + 1} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{x^2} + 1 = 1}\\{{x^2} + 1 = 3}\\{{x^2} + 1 = 4}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{x^2} = 0}\\{{x^2} = 2}\\{{x^2} = 3}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = \pm \sqrt 2 .}\\{x = \pm \sqrt 3 }\end{array}} \right.} \right.} \right.\)
Bảng biến thiên của \(f\left( {{x^2} + 1} \right)\):
Dựa vào hình vẽ, ta thấy \(f\left( {{x^2} + 1} \right) = f\left( 3 \right)\) có tất cả 4 nghiệm phân biệt.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |