Trong mặt phẳng Oxy, cho tam giác ABC có A(2; –1), B(2; –2) và C(0; –1).
Tính độ dài đường cao của tam giác ABC kẻ từ A.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Hướng dẫn giải
Độ dài đường cao của tam giác ABC kẻ từ A chính là khoảng cách từ điểm A đến cạnh BC.
Đường thẳng BC nhận \[\overrightarrow {BC} {\rm{ }} = \left( { - 2;\,\,1} \right)\] là một vectơ chỉ phương. Do đó \[\overrightarrow n = \left( {1;2} \right)\] là một vectơ pháp tuyến của BC.
Đường thẳng BC đi qua đểm B(2; –2) và có một vectơ pháp tuyến là \[\overrightarrow n = \left( {1;2} \right)\]nên có phương trình tổng quát là:
1(x – 2) + 2.[y – (–2)] = 0
⇔ x + 2y – 2 + 4 = 0
⇔ x + 2y + 2 = 0
Theo công thức tính khoảng cách, ta có \(d\left( {A,BC} \right) = \frac{{\left| {2 + 2.\left( { - 1} \right) + 2} \right|}}{{\sqrt {{1^2} + {2^2}} }} = \frac{2}{{\sqrt 5 }}\)
Vậy độ dài đường cao của tam giác ABC kẻ từ A là: \(\frac{2}{{\sqrt 5 }}\) (đvđd).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |