Cho tam giác ABC có AB = AC. Gọi D là trung điểm của cạnh BC.
a) Chứng minh rằng ∆ABD = ∆ACD và AD là tia phân giác của \(\widehat {BAC}\).
b) Vẽ DM vuông góc với AB tại M. Trên cạnh AC lấy điểm N sao cho AN = AM. Chứng minh ∆ADM = ∆ADN và DN vuông góc AC.
c) Gọi K là trung điểm của đoạn thẳng CN. Trên tia đối của tia KD lấy điểm E sao cho KE = KD. Chứng minh M, E, N thẳng hàng.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
a) Xét ∆ABD và ∆ACD, có:
AD là cạnh chung;
BD = CD (D là trung điểm BC);
AB = AC (giả thiết).
Do đó ∆ABD = ∆ACD (c.c.c).
Suy ra \(\widehat {BAD} = \widehat {CAD}\) (cặp góc tương ứng).
Vậy ∆ABD = ∆ACD và AD là tia phân giác của \(\widehat {BAC}\).
b) Xét ∆ADM và ∆ADN, có:
AD là cạnh chung;
AM = AN (giả thiết);
\(\widehat {MAD} = \widehat {NAD}\) (AD là tia phân giác của \(\widehat {BAC}\)).
Do đó ∆ADM = ∆ADN (c.g.c).
Suy ra \(\widehat {AND} = \widehat {AMD} = 90^\circ \) (cặp góc tương ứng).
Vậy ∆ADM = ∆ADN và DN ⊥ AC.
c) Ta có KE = KD (giả thiết).
Suy ra K là trung điểm DE.
Mà K cũng là trung điểm của CN (giả thiết).
Do đó tứ giác CDNE là hình bình hành.
Vì vậy NE // CD (1)
Ta có AM = AN (giả thiết) và AB = AC (giả thiết).
Suy ra \(\frac = \frac\).
Áp dụng định lí Thales đảo, ta được MN // BC (2)
Từ (1) , (2), suy ra MN ≡ NE.
Vậy ba điểm M, E, N thẳng hàng.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |