Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC có AB = AC, gọi D là trung điểm của BC. Chứng minh: a) ∆ADB = ∆ADC. b) AD là tia phân giác của \(\widehat {BAC}\) và \(\widehat B = \widehat C\). c) AD vuông góc với BC.

Cho tam giác ABC có AB = AC, gọi D là trung điểm của BC. Chứng minh:

a) ∆ADB = ∆ADC.

b) AD là tia phân giác của \(\widehat {BAC}\) và \(\widehat B = \widehat C\).

c) AD vuông góc với BC.

1 trả lời
Hỏi chi tiết
14
0
0
Nguyễn Thu Hiền
13/09 10:45:30

Lời giải

a) Xét ∆ADB và ∆ADC, có:

AD là cạnh chung;

BD = CD (D là trung điểm BC);

AB = AC (giả thiết).

Do đó ∆ADB = ∆ADC (c.c.c).

b) Ta có ∆ADB = ∆ADC (kết quả câu a).

Suy ra \(\widehat {BAD} = \widehat {CAD}\) và \(\widehat {ABD} = \widehat {ACD}\) (các cặp góc tương ứng).

Vậy AD là tia phân giác của \(\widehat {BAC}\) và \(\widehat B = \widehat C\).

c) Ta có ∆ADB = ∆ADC (kết quả câu a).

Suy ra \(\widehat {ADB} = \widehat {ADC}\) (cặp góc tương ứng).

Mà \(\widehat {ADB} + \widehat {ADC} = 180^\circ \) (cặp góc kề bù).

Khi đó \(\widehat {ADB} = \widehat {ADC} = 90^\circ \).

Vậy AD ⊥ BC.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư