LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Có hai số nguyên a, bkhác nhau mà chia hết cho b và b chia hết cho a không ?

Có hai số nguyên a, bkhác nhau mà chia hết cho b và b chia hết cho a không ?
1 trả lời
Hỏi chi tiết
10
0
0
Đặng Bảo Trâm
13/09 14:07:48

\[{\rm{a}}\] chia hết cho \[{\rm{b}}\]\( \Rightarrow \) \[{\rm{a}}\,{\rm{ = }}\,{\rm{b}}{{\rm{q}}_{\rm{1}}}\]\[{\rm{(}}{{\rm{q}}_{\rm{1}}} \in \mathbb{Z},\,b \ne 0)\]

\[{\rm{b}}\]chia hết cho \[{\rm{a}}\]\( \Rightarrow \) \[{\rm{b = a}}{{\rm{q}}_{\rm{2}}}\] \[{\rm{(}}{{\rm{q}}_1} \in \mathbb{Z},\,a \ne 0)\]

\[ \Rightarrow {\rm{a = b}}{{\rm{q}}_{\rm{1}}}{\rm{ = (a}}{{\rm{q}}_{\rm{2}}}{\rm{)}}{{\rm{q}}_{\rm{1}}}{\rm{ = a(}}{{\rm{q}}_{\rm{2}}}{{\rm{q}}_{\rm{1}}}{\rm{)}}\, \Rightarrow {{\rm{q}}_{\rm{2}}}{{\rm{q}}_{\rm{1}}}{\rm{ = 1}}\]

\[ \Rightarrow {{\rm{q}}_{\rm{2}}}{\rm{ = }}\,{{\rm{q}}_{\rm{1}}} = 1\] hoặc \[{{\rm{q}}_{\rm{2}}}{\rm{ = }}\,{{\rm{q}}_{\rm{1}}} = - 1\]

Vì \[{\rm{a}} \ne {\rm{b}}\] nên \[{{\rm{q}}_{\rm{2}}}{\rm{ = }}\,{{\rm{q}}_{\rm{1}}} = - 1\]. Do đó: \[{\rm{a}}\,{\rm{ = }}\,{\rm{b( - 1)}}\,{\rm{ = }}\,{\rm{ - b}}\]

Vậy mọi cặp số nguyên đối nhau và khác  0 đều có tính chất \[{\rm{a}}\] chia hết cho (\[{\rm{ - a}}\]) và (\[{\rm{ - a}}\]) chia hết cho \[{\rm{a}}\] và chỉ những cặp số đó.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư