Chứng minh rằng n(n + 1)(2n + 1) chia hết cho 6 với n thuộc mọi số tự nhiên.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ta có: n(n + 1)(2n + 1)
= n(n + 1)(2n + 2 – 1)
= n(n + 1)(n + 2 + n – 1)
= n(n + 1)(n + 2) + n(n + 1)(n – 1)
Vì n; n + 1; n + 2 là 3 số tự nhiên liên tiếp và n – 1; n; n + 1 cũng là 3 số tự nhiên liên tiếp.
Ta có: 3 số tự nhiên liên tiếp chắc chắn có 1 số chia hết cho 3, 1 số chia 3 dư 1, 1 số chia 3 dư 2. Do đó, tích 3 số tự nhiên liên tiếp chia hết cho 3.
Vì 3 số tự nhiên liên tiếp luôn có 2 chẵn 1 lẻ hoặc 2 lẻ 1 chẵn. Do đó, tích 3 số tự nhiên liên tiếp cũng chia hết cho 2.
Vì tích 3 số tự nhiên liên tiếp vừa chia hết cho 2 vừa chia hết cho 3 nên chia hết cho 6.
Vậy n(n + 1)(2n + 1) chia hết cho 6 với n thuộc mọi số tự nhiên.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |