LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Cho hàm số bậc bốn f (x) có bảng biến thiên như sau: Số điểm cực trị của hàm số g(x) = x2[f (x − 1)]4 là:

Cho hàm số bậc bốn f (x) có bảng biến thiên như sau:

Số điểm cực trị của hàm số g(x) = x2[f (x − 1)]4 là:

1 trả lời
Hỏi chi tiết
10
0
0
Đặng Bảo Trâm
13/09 23:33:21

Ta có:

g(x) = x2[f (x − 1)]4

=> g '(x) = 2x[f (x − 1)]4 + 4x2f '(x − 1)[f (x − 1)]3

<=> g '(x) = 2x[f (x − 1)]3[f (x − 1) + 2xf '(x − 1)] = 0

⇔x=0fx−1=0fx−1+2xf'x−1=0

Đặt t = x − 1 => x = t + 1

Xét phương trình f (x − 1) = 0 <=> f (t) = 0

Dựa vào BBT ta thấy phương trình f (t) = 0 có 4 nghiệm phân biệt khác 1 nên phương trình f (x − 1) = 0 có 4 nghiệm phân biệt khác 0.

Xét phương trình f (x − 1) + 2xf '(x − 1) = 0

=> f (t) + 2(t + 1)f '(t) = 0 (*)

Dựa vào BBT ta thấy:

f (x) là hàm bậc bốn trùng phương, đặt f (x) = ax4 + bx2 + c (a ≠ 0)

Đồ thị hàm số đi qua 3 điểm (−1; 3), (0; −1), (1; 3) và có ba điểm cực trị x = 0, x = ±1 nên ta có:

c=−1a+b+c=3f'1=0⇔c=−1a+b+c=34a+2b=0⇔a=−4b=8c=−1

=> f (x) = −4x4 + 8x2 − 1 => f '(x) = −16x3 + 16x.

Thay vào (*) ta có:

−4t4 + 8t2 − 1 + 2(t + 1)( −16t3 + 16t) = 0

<=> −4t4 + 8t2 − 1 − 32t4 + 32t2 − 32t3 + 32t = 0

<=> −36t4 − 32t3 + 40t2 + 32t − 1 = 0

Xét hàm số h (t) = −36t4 − 32t3 + 40t2 + 32t − 1 ta có:

h '(t) = − 144t3 − 96t2 + 80t + 32

Ta có: h't=0⇔t=23t=−13t=−1

Ta có BBT:

Dựa vào BBT ta thấy phương trình h (t) = 0 có 4 nghiệm phân biệt khác 1

=> Phương trình f (x − 1) − 2xf '(x − 1) = 0 có 4 nghiệm phân biệt khác 0.

Do đó, phương trình g '(x) = 0 có tất cả 9 nghiệm phân biệt.

Vậy hàm số g(x) = x2[f (x − 1)]4 có tất cả 9 điểm cực trị.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư